Skip to main content
Log in

Ice recrystallization inhibition proteins of perennial ryegrass enhance freezing tolerance

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Ice recrystallization inhibition (IRI) proteins are thought to play an important role in conferring freezing tolerance in plants. Two genes encoding IRI proteins, LpIRI-a and LpIRI-b, were isolated from a relatively cold-tolerant perennial ryegrass cv. Caddyshack. Amino acid alignments among the IRI proteins revealed the presence of conserved repetitive IRI-domain motifs (NxVxxG/NxVxG) in both proteins. Quantitative reverse transcriptase PCR (qRT-PCR) analysis indicated that LpIRI-a was up-regulated approximately 40-fold while LpIRI-b was up-regulated sevenfold after just 1 h of cold acclimation, and by 7 days of cold acclimation the transcripts had increased 8,000-fold for LpIRI-a and 1,000-fold for LpIRI-b. Overexpression of either LpIRI-a or LpIRI-b gene in Arabidopsis increased survival rates of the seedlings following a freezing test under both cold-acclimated and nonacclimated conditions. For example, without cold acclimation a −4°C treatment reduced the wild type’s survival rate to an average of 73%, but resulted in survival rates of 85–100% for four transgenic lines. With cold acclimation, a −12°C treatment reduced the wild type’s survival rate to an average of 38.7%, while it resulted in a survival rate of 51–78.5% for transgenic lines. After cold acclimation, transgenic Arabidopsis plants overexpressing either LpIRI-a or LpIRI-b gene exhibited a consistent reduction in freezing-induced ion leakage at −8, −9, and −10°C. Furthermore, the induced expression of the LpIRI-a and LpIRI-b proteins in transgenic E. coli enhanced the freezing tolerance in host cells. Our results suggest that IRI proteins play an important role in freezing tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AFP:

Antifreeze proteins

CA:

Cold-acclimated

Ct:

Threshold cycle

DHFR:

Dihydrofolate reductase

EV:

Empty vector

G:

Glycine

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

IRI:

Ice recrystallization inhibition

Lp :

Lolium perenne

LRR:

Leucine-rich repeat

N:

Asparagine

NA:

Nonacclimated

ORF:

Open reading frame

qRT-PCR:

Quantitative reverse transcriptase PCR

Ta :

Triticum aestivum

V:

Valine

WT:

Wild type

References

  • Antikainen M, Griffith M (1997) Antifreeze protein accumulation in freezing-tolerant cereals. Physiol Plant 99:423–432

    Article  CAS  Google Scholar 

  • Atici O, Nalbantoglu B (2003) Antifreeze proteins in higher plants. Phytochemistry 64:1187–1196

    Article  PubMed  CAS  Google Scholar 

  • Bravo LA, Griffith M (2005) Characterization of antifreeze activity in Antarctic plants. J Exp Bot 56:1189–1196

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:153–743

    Article  Google Scholar 

  • DeVries AL (1983) Antifreeze peptides and glycopeptides in cold-water fishes. Annu Rev Physiol 45:245–358

    Article  PubMed  CAS  Google Scholar 

  • Diévart A, Clark SE (2004) LRR-containing receptors regulating plant development and defense. Development 131:251–261

    Article  PubMed  Google Scholar 

  • Duman J, Horwath K (1983) The role of hemolymph proteins in the cold tolerance of insects. Annu Rev Physiol 45:261–270

    Article  PubMed  CAS  Google Scholar 

  • Dunman JG, Wu DW, Olsen TM, Urrutia M, Tursman D (1993) Thermal-hysteresis proteins. In: Steponkus PL (ed) Advances in low-temperature biology, vol 2. JAI, London, pp 131–182

    Google Scholar 

  • Fan Y, Liu B, Wang H, Wang S, Wang J (2002) Cloning of an antifreeze protein gene from carrot and its influence on cold tolerance in transgenic tobacco plants. Plant Cell Rep 21:296–301

    Article  CAS  Google Scholar 

  • Gilbert JA, Davies PL, Laybourn-Parry J (2005) A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol Lett 245:67–72

    Article  PubMed  CAS  Google Scholar 

  • Graham LA, Liou YC, Walker VK, Davies PL (1997) Hyperactive antifreeze protein from beetles. Nature 388:727–728

    Article  PubMed  CAS  Google Scholar 

  • Griffith M, Yaish MW (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9:399–405

    Article  PubMed  CAS  Google Scholar 

  • Griffith M, Ala P, Yang DSC, Hon WC, Moffatt BA (1992) Antifreeze protein produced endogenously in winter rye leaves. Plant Physiol 100:593–596

    Article  PubMed  CAS  Google Scholar 

  • Griffith M, Antikainen M, Hon WC, Pihakaski MK, Yu X, Chun JU, Yang DSC (1997) Antifreeze proteins in winter rye. Physiol Plant 100:327–332

    Article  CAS  Google Scholar 

  • Huang T, Nicodemus J, Zarka DG, Thomashow MF, Wisniewski M, Duman JG (2002) Expression of an insect (Dendroides canadensis) antifreeze protein in Arabidopsis thaliana results in a decrease in plant freezing temperature. Plant Mol Biol 50:333–344

    Article  PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  PubMed  CAS  Google Scholar 

  • Jia Z, Davies PL (2002) Antifreeze proteins: an unusual receptor-ligand interaction. Trends Biochem Sci 27:101–106

    Article  PubMed  CAS  Google Scholar 

  • John UP, Polotnianka RM, Sivakumaran KA, Chew O, Mackin L, Kuiper MJ, Talbot JP, Nugent GD, Mautord J, Schrauf GE, Spangenberg GC (2009) Ice recrystallization inhibition proteins and freeze tolerance in the cryophilic Antarctic hair grass Deschampsia antarctica E Desv. Plant Cell Environ 32:336–348

    Article  PubMed  CAS  Google Scholar 

  • Kenward KD, Brandle J, McPherson J, Davies PL (1999) Type II fish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance. Transgenic Res 2:105–117

    Article  Google Scholar 

  • Khanna HK, Daggard GE (2006) Targeted expression of redesigned and codon optimized synthetic gene leads to recrystallisation inhibition and reduced electrolyte leakage in spring wheat at sub-zero temperatures. Plant Cell Rep 25:1336–1346

    Article  PubMed  CAS  Google Scholar 

  • Kuiper MJ, Davies PL, Walker VK (2001) A theoretical model of a plant antifreeze protein from Lolium perenne. Biophys J 81:3560–3565

    Article  PubMed  CAS  Google Scholar 

  • Kumble KD, Demmer J, Fish S, Hall C, Corrales S, DeAth A, Elton C, Prestidge R, Luxmanan S, Marshall CJ, Wharton DA (2008) Characterization of a family of ice-active proteins from the ryegrass, Lolium perenne. Cryobiol 57:263–268

    Article  CAS  Google Scholar 

  • Lopez CE, Zuluaga AP, Cooke R, Delseny M, Tohme J, Verdier V (2003) Isolation of resistance gene candidates (RGCs) and characterization of an RGC cluster cassava. Mol Genet Genomics 269:658–671

    Article  PubMed  CAS  Google Scholar 

  • Meyer K, Keil M, Naldrett MJ (1999) A leucine-rich repeat protein of carrot that exhibits antifreeze activity. FEBS Lett 447:171–178

    Article  PubMed  CAS  Google Scholar 

  • Middleton A, Brown A, Davies P, Walker V (2009) Identification of the ice-binding face of a plant antifreeze protein. FEBS Lett 583:815–819

    Article  PubMed  CAS  Google Scholar 

  • Moffatt B, Ewart V, Esstman A (2006) Cold comfort: plant antifreeze proteins. Physiol Plant 126:5–16

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Pihakaski-Manusbach K, Tamminen I, Pietiainen M, Griffith M (2003) Antifreeze proteins are secreted by winter rye cell in suspension culture. Physiol Plant 118:390–398

    Article  Google Scholar 

  • Pudney PDA, Buckley SL, Sidebottom CM, Twigg SN, Sevilla MP, Holt CB, Roper D, Telford JH, McArthur AJ, Lillford PJ (2003) The physico-chemical characterization of a boiling stable antifreeze protein from a perennial grass (Lolium perenne). Arch Biochem Biophys 410:238–245

    Article  PubMed  CAS  Google Scholar 

  • Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea bacterium. FEMS Microbiol Ecol 61:214–221

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Sandve SR, Rudi H, Asp T, Rognli OA (2008) Tracking the evolution of a cold stress associated gene family in cold tolerant grasses. BMC Evol Biol 8:245. doi:10.1186/1471-2148-8-245

    Article  PubMed  Google Scholar 

  • Servier CS, Kaiser CA (2002) Formation and transfer of disulphide bonds in living cells. Mol Cell Biol 3:836–847

    Google Scholar 

  • Sidebottom C, Buckley S, Pudney P, Twigg S, Jarman C, Holt C, Telford J, McArthur A, Worral D, Hubbard R, Lillford P (2000) Heat-stable antifreeze protein from grass. Nature 406:256

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Tremblay K, Ouellet F, Fournier J, Danyluk J, Sarhan F (2005) Molecular characterization and origin of novel bipartite cold-regulated ice recrystallization inhibition proteins from cereals. Plant Cell Physiol 46:884–891

    Article  PubMed  CAS  Google Scholar 

  • Urrutia ME, Duman JG, Knight CA (1992) Plant thermal hysteresis proteins. Biochim Biophys Acta 1121:199–206

    Article  PubMed  CAS  Google Scholar 

  • Worrall D, Elias L, Ashford D, Smallwood M, Sidebottom C, Lilford P, Telford J, Holt C, Bowles D (1998) A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science 282:115–117

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Griffith M (1999) Antifreeze proteins in winter rye leaves form oligomeric complexes. Plant Physiol 119:1361–1369

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Liu B, Feng D, He Y, Wang J (2004) Expression, purification, and antifreeze activity of carrot antifreeze protein and its mutants. Protein Expres Purif 35:257–263

    Article  CAS  Google Scholar 

  • Zhang C, Fei SZ, Warnke S, Li L, Hannapel D (2009) Transcriptome profiling in perennial ryegrass during cold acclimation by using expressed sequence tag analysis. J Plant Physiol 166:1436–1445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by grants to S. F. by the United States Golf Association and the Iowa Turfgrass Institute. We wish to thank The Jacklin Seed for providing the Caddyshack perennial ryegrass seed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shui-zhang Fei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 174 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Fei, Sz., Arora, R. et al. Ice recrystallization inhibition proteins of perennial ryegrass enhance freezing tolerance. Planta 232, 155–164 (2010). https://doi.org/10.1007/s00425-010-1163-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1163-4

Keywords

Navigation