Skip to main content
Log in

Alleviating effects of exogenous Gamma-aminobutiric acid on tomato seedling under chilling stress

  • Short communication
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Low temperature during germination and early seedling growth is one of the most significant limiting factors in the productivity of plants. Tomato seedling germination is sensitive to chilling stress. Gamma-aminobutyric acid (GABA), as a non-protein amino acid, involved in various stress tolerances in plants. In this study, 5-day old tomato seedlings were exposed to chilling stress (2 ± 0.05 °C for 48 h) and then the effects of 0, 100, 250, 500 and 750 μmolL−1 concentrations of GABA on electrolyte leakage, proline and malondialdehyde (MDA) content were investigated. The resultS showed that the antioxidant enzyme activity, electrolyte leakage, MDA and proline content were significantly reduced by GABA treatments. However under chilling stress seedlings treated with GABA exhibited significantly higher sugar and proline contents as compared to un-treated seedlings. These results suggest that GABA treatment protects tomato seedlings from chilling stress by enhancing some antioxidant enzymes activity and reducing MDA content which results in maintaining membrane integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Aghdam MS, Asghari M, Farmani B, Mohayeji M, Moradbeygi H (2012) Impact of postharvest brassinosteroids treatment on PAL activity in tomato fruit in response to chilling stress. Sci Hortic 144:116–120. doi:10.1016/j.scienta.2012.07.008

    Article  CAS  Google Scholar 

  • Aroca R, Tognoni F, Irigoyen JJ, Sánchez-Díaz M, Pardossi A (2001) Different root low temperature response of two maize genotypes differing in chilling sensitivity. Plant Physiol Biochem 39(12):1067–1073. doi:10.1016/S0981-9428(01)01335-3

    Article  CAS  Google Scholar 

  • Atherton JG, Rudich J (1986) The tomato crop: a scientific basis for improvement. Chapman and Hall London, England

    Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207. doi:10.1007/bf00018060

    Article  CAS  Google Scholar 

  • Chen YP, Jia JF, Yue M (2010) Effect of CO2 laser radiation on physiological tolerance of wheat seedlings exposed to chilling stress. Photochem Photobiol 86(3):600–605

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17(7):1866–1875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guan YJ, Hu J, Wang XJ, Shao CX (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B 10(6):427–433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guijin Z, Bown AW (1997) The rapid determination of γ-aminobutyric acid. Phytochemistry 44(6):1007–1009. doi:10.1016/S0031-9422(96)00626-7

    Article  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JA, Ferrer MA, Jimenez A, Barcelo AR, Sevilla F (2001) Antioxidant systems and O2.-/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127(3):817–831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoagland D, Arnon D (1950) The water-culture method for growing plants without soil. Circular 347. University of California, Berkeley, 32 p

    Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactivesubstances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207(4):604–611. doi:10.1007/s004250050524

    Article  CAS  Google Scholar 

  • Jiang Y, Shiina T, Nakamura N, Nakahara A (2001) Electrical conductivity evaluation of postharvest strawberry damage. J Food Sci 66(9):1392–1395. doi:10.1111/j.1365-2621.2001.tb15220.x

    Article  CAS  Google Scholar 

  • Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19(6):479–509. doi:10.1080/07352680091139277

    Article  CAS  Google Scholar 

  • Li H, Sun Q, Zhao S (2000) Principles and techniques of plant physiological biochemical experiment. Higher Education, Beijing, pp 186–191

    Google Scholar 

  • Malekzadeh P, Khara J, Heidari R (2012) Effect of exogenous Gama-aminobutyric acid on physiological tolerance of wheat seedlings exposed to chilling stress. Iran J Plant Physiol 3 (1)

  • Mazzucotelli E, Tartari A, Cattivelli L, Forlani G (2006) Metabolism of γ-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. J Exp Bot 57(14):3755–3766

    Article  CAS  PubMed  Google Scholar 

  • Nayyar H, Chander K, Kumar S, Bains T (2005) Glycine betaine mitigates cold stress damage in Chickpea. Agron Sustain Dev 25(3):381–388

    Article  CAS  Google Scholar 

  • Posmyk MM, Bailly C, Szafranska K, Janas KM, Corbineau F (2005) Antioxidant enzymes and isoflavonoids in chilled soybean (Glycine max (L.) Merr.) seedlings. J Plant Physiol 162(4):403–412

    Article  CAS  PubMed  Google Scholar 

  • Sawaki Y, Iuchi S, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H (2009) STOP1 regulates multiple genes that protect arabidopsis from proton and aluminum toxicities. Plant Physiol 150(1):281–294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shang H, Cao S, Yang Z, Cai Y, Zheng Y (2011) Effect of exogenous gamma-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage. J Agric Food Chem 59(4):1264–1268

    Article  CAS  PubMed  Google Scholar 

  • Song H, Xu X, Wang H, Wang H, Tao Y (2010) Exogenous γ–aminobutyric acid alleviates oxidative damage caused by aluminium and proton stresses on barley seedlings. J Sci Food Agric 90(9):1410–1416

    Article  CAS  PubMed  Google Scholar 

  • Xing SG, Jun YB, Hau ZW, Liang LY (2007) Higher accumulation of γ-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots. Plant Physiol Biochem 45(8):560–566. doi:10.1016/j.plaphy.2007.05.007

    Article  CAS  PubMed  Google Scholar 

  • Yadegari LZ, Heidari R, Carapetian J (2007) The influence of cold acclimation on proline, malondialdehyde (MDA), total protein and pigments contents in soybean (Glycine max) seedlings. J Biol Sci 7(8):1436–1141

    Article  CAS  Google Scholar 

  • Yang A, Cao S, Yang Z, Cai Y, Zheng Y (2011) γ-Aminobutyric acid treatment reduces chilling injury and activates the defence response of peach fruit. Food Chem 129(4):1619–1622. doi:10.1016/j.foodchem.2011.06.018

    Article  CAS  Google Scholar 

  • Zhao D, Shen L, Fan B, Liu K, Yu M, Zheng Y, Ding Y, Sheng J (2009) Physiological and genetic properties of tomato fruits from 2 cultivars differing in chilling tolerance at cold storage. J Food Sci 74(5):C348–C352

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parviz Malekzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malekzadeh, P., Khara, J. & Heydari, R. Alleviating effects of exogenous Gamma-aminobutiric acid on tomato seedling under chilling stress. Physiol Mol Biol Plants 20, 133–137 (2014). https://doi.org/10.1007/s12298-013-0203-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-013-0203-5

Keywords

Navigation