Skip to main content
Log in

Biochemical, physiological and molecular evaluation of rice cultivars differing in salt tolerance at the seedling stage

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Changes in the antioxidant enzymes, lipid peroxidation, sodium and potassium, chlorophyll, H2O2 and proline content were monitored in the leaves of 42 rice varieties which were not yet well-documented for the salinity tolerance under different salinity levels. The tolerant varieties (FL478, Hassani, Shahpasand, Gharib and Nemat) showed signs of tolerance (lower Na+/K+ ratio, high proline accumulation, less membrane damage, lower H2O2 production, and higher superoxide dismutase and catalase activity) very well. The positive relationship between the level of salt tolerance and the amount of proline accumulation in the rice varieties support the important role of proline under the salt stress. The varieties were genotyped for 12 microsatellite markers that were closely linked to SalTol QTL. The results of association analysis indicated that RM1287, RM8094, RM3412 and AP3206 markers had the high value of R2 for the regression models of the studied traits. It shows the important role of SalTol in controlling physio-biochemical traits. The results can be used in the future marker assisted selection (MAS) directly, if the results are confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul-Jaleel C, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi HJ, Chang-Xing Z, Hong-Bo S, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constrains. Acta Physiol Plantarum 31:427–436

    Article  CAS  Google Scholar 

  • Abu-Muriefah SS (2015) Effect of sitosterol on growth, metabolism and protein pattern of pepper (Capsicum Annuum L.) plants grown under salt stress conditions. Int J Agric Crop Sci 8:94–106

    CAS  Google Scholar 

  • Affifi A, Clark VA, May S (2004) Computer-aided multivariate analysis, 4th edn. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Aktas H, Abak K, Cakmak I (2006) Genotypic variation in the response of pepper to salinity. Sci Hortic 110:260–266

    Article  CAS  Google Scholar 

  • Al-aghabary K, Zhu Z, Shi Q (2005) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27:2101–2115

    Article  Google Scholar 

  • Alam MZ, Stuchbury T, Naylor REL, Rashid MA (2004) Effect of salinity on growth of some modern rice cultivars. J Agron 3:1–10

    Article  Google Scholar 

  • Ashraf M (1999) Interactive effect of salt (NaCl) and nitrogen form on growth, water relations and photosynthetic capacity of sunflower (Helianthus annuus L.). Ann Appl Biol 35:509–513

    Article  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Ali Q (2008) Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ Exp Bot 63:266–273

    Article  CAS  Google Scholar 

  • Ashraf M, Harris P (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Ashraf M, McNeilly T (2004) Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci 23:157–174

    Article  CAS  Google Scholar 

  • Azuma R, Ito N, Nakayama N, Suwa R, Nguyen NT, Larrinaga-Mayoral JÁ, Esaka M, Fujiyama H, Saneoka H (2010) Fruits are more sensitive to salinity than leaves and stems in pepper plants (Capsicum annuum L.). Sci Hortic 125:171–178

    Article  CAS  Google Scholar 

  • Babu MA, Singh D, Gothandam K (2012) The effect of salinity on growth, hormones and mineral elements in leaf and fruit of tomato cultivar PKM1. J Anim Plant Sci 22:159–164

    CAS  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  PubMed  Google Scholar 

  • Bonilla P, Dvorak J, Mackill D, Deal K, Gregorio G (2002) RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp Agric Sci 85:68–76

    Google Scholar 

  • Chance B, Maehly A (1955) Assay of catalases and peroxidases. Method Enzymol 2:764–775

    Article  Google Scholar 

  • Cha-um S, Boriboonkaset T, Pichakum A, Kirdmanee C (2009) Multivariate physiological indices for salt tolerant classification in indica rice (Oryza sativa L. spp. indica). Gen Appl Plant Physiol 35:75–87

    CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Chunthaburee S, Anoma D, Jirawat S, Wattana P, Piyada T (2015) Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage. Saudi J Biol Sci 23:467–477

    Article  PubMed  PubMed Central  Google Scholar 

  • Cicek N, Cakirlar H (2008) Changes in some antioxidant enzyme activities in six soybean cultivars in response to long-term salinity at two different temperatures. Gen Appl Plant Physiol 34:267–280

    CAS  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comba ME, Benavides MP, Tomaro ML (1998) Effect of salt stress on antioxidant defence system in soybean root nodules. Aust J Plant Physiol 25:665–671

    Article  CAS  Google Scholar 

  • De Azevedo Neto AD, Prisco JT, Enéas-Filho J, Abreu CEBD, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94

    Article  Google Scholar 

  • Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    Article  CAS  Google Scholar 

  • Dieriga DA, Grieve MC, Shannon MC (2003) Selection for salt tolerance in lesquerella fendleri. Ind Crops Prod 17:15–22

    Article  Google Scholar 

  • Eckardt NA (2000) Sequencing the Rice Genome. Plant Cell Online 12:2011–2017

    Article  CAS  Google Scholar 

  • FAO (2010) Food and Agriculture Organization of the United Nations Desertification

  • Fariduddin Q, Khalil RRAE, Mir BA, Yusuf M, Ahmad A (2013) 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environ Monit Assess 185:7845–7856

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ (1999) Salinisation and horticultural production. Sci Hort 78:1–4

    Google Scholar 

  • Foolad MR (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell Tiss Org 76:101–119

    Article  CAS  Google Scholar 

  • Ghosh N, Adak MK, Ghosh PD, Gupta S, Sen Gupta DN, Mandal C (2011) Differential responses of two rice varieties to salt stress. Plant Biotechnol Rep 5:89–103

    Article  Google Scholar 

  • Gregorio GB, Senadhira D, Mendoza R (1997) Screening rice for salinity tolerance. IRRI. Discussion Paper No. 22. Philipines, Los Banos

  • Gregorio GB, Senadhira D, Mendoza RD, Manigbas NL, Roxas JP, Guerta CQ (2002) Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crop Res 76:91–101

    Article  Google Scholar 

  • Grover A, Pental D (2003) Breeding objectives and requirements for producing transgenic for the major field crops of India. Curr Sci 84:310–320

    Google Scholar 

  • Hernandez JA, Aguilar AB, Portillo B, Lopez-Gomez E, Beneyto JM, Garcia-Legaz MF (2003) The effect of calcium on the antioxidant enzymes from salt-treated loquat and anger plants. Funct Plant Biol 30:1127–1137

    Article  CAS  Google Scholar 

  • ICARDA (2002) International cooperation Highlands’s regional program. Available on: URL:http//www.icarda.cgiar.Org

  • Igarashi Y, Yoshiba Y, Sanada Y, Yamaguchi-Shinozaki K, Wada K, Shinozaki K (1997) Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Molec Biol 33:857–865

    Article  CAS  Google Scholar 

  • IRRI (1996) Standard evaluation system for rice, 4th edn. INGER Genetics Resource Centre, IRRI, Manila, pp 1–30

  • Islam MM (2004) Mapping salinity tolerance genes in rice (Oryza sativa L.) at reproductive stage. PhD thesis, University of the Philippines, Philippines

  • Jamil M, Shafiq R, Rha E (2014) Response of growth, PSII photochemistry, and chlorophyll content to salt stress in four brassica species. Life Sci J 11:139–145

    CAS  Google Scholar 

  • Jiang Q, Roche D, Monaco T, Hole D (2006) Stomatal conductance is a key parameter to assess limitations to photosynthesis and growth potential in barley genotypes. Plant Biol 8:515–521

    Article  CAS  PubMed  Google Scholar 

  • Jithesh M, Prashanth S, Sivaprakash K, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defence. J Genet 85:237–254

    Article  CAS  PubMed  Google Scholar 

  • Kanawapee N, Sanitchon J, Srihaban P, Theerakulpisut P (2013) Physiological changes during development of rice (Oryza sativa L.) varieties differing in salt tolerance under saline field condition. Plant Soil 370:89–101

    Article  CAS  Google Scholar 

  • Kanwal S, Ashraf M, Shahbaz M (2011) Assessment of salt tolerance of some newly developed and candidate wheat (Triticum aestivum L.) cultivars using gas exchange and chlorophyll fluorescence attributes. Pak J Bot 45:2693–2699

    Google Scholar 

  • Kaouther Z, Nina H, Rezwan A, Cherif H (2013) Evaluation of salt tolerance (NaCl) in Tunisian chili pepper (Capsicum frutescens L.) on growth, mineral analysis and solutes synthesis. J Stress Physiol Biochem 9:209–228

    Google Scholar 

  • Khafagy MA, Arafa AA, El-Banna MF (2009) Glycinebetaine and ascorbic acid can alleviate the harmful effects of NaCl salinity in sweet pepper. Aust J Crop Sci 3:257–267

    CAS  Google Scholar 

  • Kishor PB, Sangam S, Amrutha RN (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    CAS  Google Scholar 

  • Koji Y, Mitsuya S, Kawasaki M, Taniguchi M, Miyake H (2008) Salinity induced chloroplast damages in rice leaves (Oryza sativa L.) are reduced by pretreatment with methyl viologen. In: 14th Australian Agronomy Conference 21–25 September

  • Kong-ngern K, Bunnag S, Theerakulpisut P (2012) Proline, hydrogen peroxide, membrane stability and antioxidant enzyme activity as potential indicators for salt tolerance in rice (Oryza sativa L.). Int J Bot 8:54–65

    Article  Google Scholar 

  • Kordrostami M, Rabiei B, Hassani Kumleh H (2016) Association analysis, genetic diversity and haplotyping of rice plants under salt stress using SSR markers linked to SalTol and morpho-physiological characteristics. Plant Syst Evol 302:871–890

    Article  CAS  Google Scholar 

  • Kumar V, Shriram V, Nikam TD, Narendra J, Mahadeo GS (2009) Antioxidant enzyme activities and protein profiling under salt stress in indica rice genotypes differing in salt tolerance. Arch Agron Soil Sci 55:379–394

    Article  CAS  Google Scholar 

  • Lechno S, Zamski E, Tel-Or E (1997) Salt stress-induced responses in cucumber plants. J Plant Physiol 150:206–211

    Article  CAS  Google Scholar 

  • Lee G, Carrow RN, Duncan RR (2004) Photosynthetic responses to salinity stress of halophytic seashore paspalum ecotypes. Plant Sci 166:1417–1425

    Article  CAS  Google Scholar 

  • López-Aguilar R, Medina-Hernández D, Ascencio-Valle F, Troyo-Dieguez E, Nieto-Garibay A, Arce-Montoya M, Larrinaga-Mayoral JA, Gómez-Anduro GA (2012) Differential responses of Chiltepin (Capsicum annuum var. glabriusculum) and Poblano (Capsicum annuum var. annuum) hot peppers to salinity at the plantlet stage. Afr J Biotechnol 11:2642–2653

    Google Scholar 

  • Lutts S, Majerus V, Kinet JM (1999) NaCl effects on proline metabolism in rice (Oryza sativa L.) seedlings. Physiol Plantarum 105:450–458

    Article  CAS  Google Scholar 

  • Maggio A, Raimondi G, Martino A, De Pascale S (2007) Salt stress response in tomato beyond the salinity tolerance threshold. Environ Exp Bot 59:276–282

    Article  CAS  Google Scholar 

  • Megdiche W, Hessini K, Gharbi F, Jaleel CA, Ksouri R, Abdelly C (2008) Photosynthesis and photosystem 2 efficiency of two salt-adapted halophytic seashore Cakile maritima ecotypes. Photosynthetica 46:410–419

    Article  CAS  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Mohammadi-Nejad G, Singh RK, Arzani A, Rezaie AM, Sabouri H, Gregorio GB (2010) Evaluation of salinity tolerance in rice genotypes. Int J Plant Prod 4:199–208

    CAS  Google Scholar 

  • Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99:1161–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motohashi T, Nagamiya K, Prodhan SH (2010) Production of salt stress tolerantrice by overexpression of the catalase gene, katE, derived from Escherichia coli. Asia Pac J Mol Biol Biotechnol 18:37–41

    Google Scholar 

  • Mousa MA, Al-Qurashi AD, Bakhashwain AA (2013) Response of tomato genotypes at early growing stages to irrigation water salinity. J Food Agric Environ 11:501–507

    Google Scholar 

  • Mousa MAA, Al-Qurashi AD, Bakhashwain AAS (2014) Ions concentration and their ration in roots and shoots of tomato genotypes associated with salinity tolerance at early growth stage. Int J Plant Anim Environ 4:586–600

    CAS  Google Scholar 

  • Mukhtar E, Siddiqi K, Bhatti KH, Nawaz K, Hussain K (2013) Gas exchange attributes can be valuable selection criteria for salinity tolerance in canola cultivars (Brassica napus L.). Pak J Bot 45:35–40

    CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  • Naumann JC, Young DR, Anderson JE (2008) Leaf chlorophyll fluorescence, reflectance, and physiological response to freshwater and saltwater flooding in the evergreen shrub, Myrica cerifera. Environ Exp Bot 63:402–409

    Article  CAS  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Syeed S, Khan NA (2011) Understanding the significance of sulfur in improving salinity tolerance in plants. Environ Exp Bot 70:80–87

    Article  CAS  Google Scholar 

  • Niones JM (2004) Fine mapping of the salinity tolerance gene on chromosome 1 of rice (Oryza sativa L.) using near-isogenic lines. MSc Dissertation, University of the Philippines, Philippines

  • Niu G, Cabrera RI (2010) Growth and physiological responses of landscape plants to saline water irrigation: a review. HortScience 45:1605–1609

    Google Scholar 

  • Niu G, Rodriguez DS, Call E, Bosland PW, Ulery A, Acosta E (2010) Responses of eight Chile peppers to saline water irrigation. Sci Hortic 126:215–222

    Article  CAS  Google Scholar 

  • Octávio LF, Joaquim EF, José TP, Enéas GF (1999) Effects of CaCl2 on growth and osmoregulator accumulation in NaCl stressed cowpea seedlings. Braz J Plant Physiol 11:145–151

    Google Scholar 

  • Panaud O, Chen X, McCouch SR (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Genet Genomics 252:597–607

    CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotox Environ Safe 60:324–349

    Article  CAS  Google Scholar 

  • Postini K, Bieker A (1994) The photosynthesis reaction of two wheat varieties related to salt stress. J Agr Sci Iran 26:1–11 (In Persian)

    Google Scholar 

  • Quiroga M, Guerrero C, Botella MA, Barceló A, Amaya I, Medina MI, Alonso FJ, De Forchetti SM, Tigier H, Valpuesta V (2000) A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol 122:1119–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raza SH, Athar HUR, Ashraf M (2006) Influence of exogenously applied glycinebetaine on the photosynthetic capacity of two differently adapted wheat cultivars under salt stress. Pak J Bot 38:341–351

    Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Ren ZH, Gao JPL, Li G, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Roy SN, Bargmann RE (1958) Tests of multiple independence and the associated condense-bounds. Ann Math Stat 29:491–503

    Article  Google Scholar 

  • Rubio J, Garcia-Sanchez F, Rubio F, Martinez V (2009) Yield, blossom-end rot incidence, and fruit quality in pepper plants under moderate salinity are affected by K+ and Ca2+ fertilization. Sci Hortic 119:79–87

    Article  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgesen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. PNAS, P Natl A Sci 81: 8014–8018

  • Saha P, Chatterjee P, Biswas AK (2010) NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian J Exp Biol 48:593–600

    CAS  PubMed  Google Scholar 

  • Sahi C, Singh A, Kumar K (2006) Salt stress response in rice: genetics, molecular biology and comparative genomics. Funct Integr Genomics 6:263–284

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Rao KV, Srivastava G (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    Article  CAS  Google Scholar 

  • Santos VC (2004) Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci Hortic 130:93–99

    Article  Google Scholar 

  • Sekmen AH, Türkan İ, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Plantarum 131:399–411

    Article  CAS  Google Scholar 

  • Shu S, Guo SR, Sun J, Yuan LY (2012) Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiol Plantarum 146:285–296

    Article  CAS  Google Scholar 

  • Siddiqi EH, Ashraf M, Hussain M, Jamil A (2009) Assessment of intercultivar variation for salt tolerance in safflower (Carthamus tinctorius L.) using gas exchange characteristics as selection criteria. Pak J Bot 41:2251–2259

    CAS  Google Scholar 

  • Stepien P, Klobus G (2005) Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol Plantarum 125:31–40

    Article  CAS  Google Scholar 

  • Sudhakar C, Lakshmi A, Giridarakumar S (2001) Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci 161:613–619

    Article  CAS  Google Scholar 

  • Sudhir P, Murthy S (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486

    Article  CAS  Google Scholar 

  • Takehisa H, Shimodate T, Fukuta Y, Ueda T, Yano M, Yamaya T, Kameya T, Sato T (2004) Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water. Field Crop Res 89:85–95

    Article  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Vaidyanathan H, Sivakumar P, Chakrabarsty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) differential response in salt-tolerant and sensitive varieties. Plant Sci 165:1411–1418

    Article  CAS  Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid raintreated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang L, Showalter AM, Ungar IA (1997) Effect of salinity on growth, ion content, and cell wall chemistry in Atriplex prostrata (Chenopodiaceae). Am J Bot 84:1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Wani AS, Ahmad A, Hayat S, Fariduddin Q (2013) Salt-induced modulation in growth, photosynthesis and antioxidant system in two varieties of Brassica juncea. Saudi J Biol Sci 20:183–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wi SG, Chung BY, Kim JH, Lee KS, Kim JS (2006) Deposition pattern of hydrogen peroxide in the leaf sheaths of rice under salt stress. Biol Plant 50:469–472

    Article  CAS  Google Scholar 

  • Witcombe JR, Hollington PA, Howarth CJ, Reader S, Steele KA (2008) Breeding for abiotic stresses for sustainable agriculture. Philos T R Soc B 363:703–716

    Article  CAS  Google Scholar 

  • Wu XX, Ding HD, Zhu ZW, Yang SJ, Zha DS (2012) Effects of 24-epibrassinolide on photosynthesis of eggplant (Solanum melongena L.) seedlings under salt stress. Afr J Biotechnol 11:8665–8671

    Article  CAS  Google Scholar 

  • Yildirim B, Yaser F, Ozpay T, Ozpay D, Turkozu D, Terziodlu O, Tamkoc A (2008) Variations in response to salt stress among field pea genotypes (Pisum sativum sp. arvense L.). J Anim Vet Adv 7:907–910

    Google Scholar 

  • Zeng L, James AP, Wilson C, Draz ASE, Gregorio GB, Grieve CM (2003) Evaluation of salt tolerance in rice genotypes by physiological characters. Euphytica 129:281–292

    Article  CAS  Google Scholar 

  • Zhani K, Elouer MA, Aloui H, Hannachi C (2012) Selection of a salt tolerant Tunisian cultivar of chili pepper (Capsicum frutescens). EurAsian J BioSciences 6:47–59

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. Kordrostami performed the experiments, analyzed the data and wrote the first draft of the paper. B. Rabiei and H. Hassani Kumleh conceived the project, performed the critical revision of the data and wrote the final version of the paper.

Corresponding author

Correspondence to Babak Rabiei.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research involving human participants and/or animals

The authors declare that the present study does not involve any human participants and/or animals.

Informed consent

The authors declare that the present study does not involve any informed consent.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordrostami, M., Rabiei, B. & Hassani Kumleh, H. Biochemical, physiological and molecular evaluation of rice cultivars differing in salt tolerance at the seedling stage. Physiol Mol Biol Plants 23, 529–544 (2017). https://doi.org/10.1007/s12298-017-0440-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-017-0440-0

Keywords

Navigation