Skip to main content

Advertisement

Log in

Downregulation of MIR100HG Induces Apoptosis in Human Megakaryoblastic Leukemia Cells

  • Original Article
  • Published:
Indian Journal of Hematology and Blood Transfusion Aims and scope Submit manuscript

Abstract

Long noncoding ribonucleic acids (lncRNAs) are ribonucleic acid (RNA) molecules longer than 200 nucleotides without protein-coding capacity. Several studies have shown that lncRNAs play a pivotal role in the initiation, maintenance, and progression of acute myeloid leukemia (AML), which could make them a promising candidate in the diagnosis and treatment of leukemia. Acute Megakaryoblastic leukemia (AMKL) is a rare form of AML with a poor prognosis and low survival. It has been reported that lncRNA MIR100HG is involved several types of malignancies. In the present study, MIR100HG was downregulated in a human acute megakaryoblastic leukemia cell line (M-07e) using Antisense LNA GapmeRs. In order to assess the expression level of MIR100HG, cell viability, apoptosis, and necrosis (late apoptosis), quantitative reverse transcription polymerase chain reaction (qRT-PCR), Methyl-thiazol Tetrazolium assay, AnnexinV, and propidium iodide staining was performed at different time points after the transfection. In addition, the expression level of TGFβ was evaluated by qRT-PCR. Our results revealed that inhibition of MIR100HG might serve as a new method for inhibition of the proliferation of AMKL cells and therefore, could be a promising approach in medicine for targeted therapy in AMKL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Short NJ, Rytting ME (2018) Acute myeloid leukaemia. Lancet 392:593–606. https://doi.org/10.1016/S0140-6736(18)31041-9

    Article  PubMed  Google Scholar 

  2. Mortazavi D, Sharifi M (2018) Antiproliferative effect of upregulation of hsa-let-7c-5p in human acute erythroleukemia cells. Cytotechnology 70:1509–1518. https://doi.org/10.1007/s10616-018-0241-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Castelli G, Pelosi E, Testa U (2016) Targeted therapies in the treatment of adult acute myeloid leukemias: current status and future perspectives. Int J Hematol Oncol 5:143–164. https://doi.org/10.2217/ijh-2016-0011

    Article  CAS  PubMed  Google Scholar 

  4. Kabel AM, Zamzami F, Al-Talhi M et al (2017) Acute myeloid leukemia: a focus on risk factors, clinical presentation, diagnosis and possible lines of management. J Cancer Res Treat 5:62–67. https://doi.org/10.12691/jcrt-5-2-4

    Article  CAS  Google Scholar 

  5. De Kouchkovsky I, Abdul-Hay M (2016) Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J 6:e441. https://doi.org/10.1038/bcj.2016.50

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dima D, Oprita L, Rosu A-M et al (2017) Adult acute megakaryoblastic leukemia: rare association with cytopenias of undetermined significance and p210 and p190 BCR–ABL transcripts. Onco Targets Ther 10:5047–5051. https://doi.org/10.2147/OTT.S146973

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhao G, Wu W, Wang X, Gu J (2018) Clinical diagnosis of adult patients with acute megakaryocytic leukemia. Oncol Lett 16:6988–6997. https://doi.org/10.3892/ol.2018.9501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li Y, Wang X (2016) Role of long noncoding RNAs in malignant disease (Review). Mol Med Rep 13:1463–1469. https://doi.org/10.3892/mmr.2015.4711

    Article  CAS  PubMed  Google Scholar 

  9. Tian X, Tian J, Tang X et al (2016) Long non-coding RNAs in the regulation of myeloid cells. J Hematol Oncol. https://doi.org/10.1186/s13045-016-0333-7

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wu Y, Shao A, Wang L et al (2019) The role of lncRNAs in the distant metastasis of breast cancer. Front Oncol. https://doi.org/10.3389/fonc.2019.00407

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang S, Ke H, Zhang H et al (2018) LncRNA MIR100HG promotes cell proliferation in triple-negative breast cancer through triplex formation with p27 loci. Cell Death Dis 9:805. https://doi.org/10.1038/s41419-018-0869-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Emmrich S, Streltsov A, Schmidt F et al (2014) LincRNAs MONC and MIR100HG act as oncogenes in acute megakaryoblastic leukemia. Mol Cancer 13:171. https://doi.org/10.1186/1476-4598-13-171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu Y, Zhao X, Liu Q et al (2017) lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling. Nat Med 23:1331–1341. https://doi.org/10.1038/nm.4424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Straarup EM, Fisker N, Hedtjärn M et al (2010) Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates. Nucleic Acids Res 38:7100–7111. https://doi.org/10.1093/nar/gkq457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fazil MHUT, Ong ST, Chalasani MLS et al (2016) GapmeR cellular internalization by macropinocytosis induces sequence-specific gene silencing in human primary T-cells. Sci Rep 6:37721. https://doi.org/10.1038/srep37721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martinovich KM, Shaw NC, Kicic A et al (2018) The potential of antisense oligonucleotide therapies for inherited childhood lung diseases. Mol Cell Pediatr. https://doi.org/10.1186/s40348-018-0081-6

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schweitzer J, Zimmermann M, Rasche M et al (2015) Improved outcome of pediatric patients with acute megakaryoblastic leukemia in the AML-BFM 04 trial. Ann Hematol 94:1327–1336. https://doi.org/10.1007/s00277-015-2383-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huarte M (2015) The emerging role of lncRNAs in cancer. Nat Med 21:1253–1261. https://doi.org/10.1038/nm.3981

    Article  CAS  PubMed  Google Scholar 

  19. Wei S, Wang K (2016) Long noncoding RNAs: pivotal regulators in acute myeloid leukemia. Exp Hematol Oncol 5:30. https://doi.org/10.1186/s40164-016-0059-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morlando M, Ballarino M, Fatica A (2015) Long non-coding RNAs: new players in hematopoiesis and leukemia. Front Med. https://doi.org/10.3389/fmed.2015.00023

    Article  Google Scholar 

  21. Nobili L, Lionetti M, Neri A (2016) Long non-coding RNAs in normal and malignant hematopoiesis. Oncotarget 7:50666–50681. https://doi.org/10.18632/oncotarget.9308

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cruz-Miranda GM, Hidalgo-Miranda A, Bárcenas-López DA et al (2019) Long non-coding RNA and acute leukemia. Int J Mol Sci. https://doi.org/10.3390/ijms20030735

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li J, Xu Q, Wang W, Sun S (2019) MIR100HG: a credible prognostic biomarker and an oncogenic lncRNA in gastric cancer. Biosci Rep. https://doi.org/10.1042/BSR20190171

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sun Q, Tripathi V, Yoon J-H et al (2018) MIR100 host gene-encoded lncRNAs regulate cell cycle by modulating the interaction between HuR and its target mRNAs. Nucleic Acids Res 46:10405–10416. https://doi.org/10.1093/nar/gky696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang Y, Zhang C, Zhou Y (2019) LncRNA MIR100HG promotes cancer cell proliferation, migration and invasion in laryngeal squamous cell carcinoma through the downregulation of miR-204-5p. Onco Targets Ther 12:2967–2973. https://doi.org/10.2147/OTT.S202528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Su X, Teng J, Jin G et al (2019) ELK1-induced upregulation of long non-coding RNA MIR100HG predicts poor prognosis and promotes the progression of osteosarcoma by epigenetically silencing LATS1 and LATS2. Biomed Pharmacother 109:788–797. https://doi.org/10.1016/j.biopha.2018.10.029

    Article  CAS  PubMed  Google Scholar 

  27. Shang C, Zhu W, Liu T et al (2016) Characterization of long non-coding RNA expression profiles in lymph node metastasis of early-stage cervical cancer. Oncol Rep 35:3185–3197. https://doi.org/10.3892/or.2016.4715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Emmrich S, Rasche M, Schöning J et al (2014) miR-99a/100∼125b tricistrons regulate hematopoietic stem and progenitor cell homeostasis by shifting the balance between TGFβ and Wnt signaling. Genes Dev 28:858–874. https://doi.org/10.1101/gad.233791.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bagheri M, Sharifi M (2019) The effect of inhibition of lncrna mir 100hg on the proliferation of human promyelocytic leukemia cells. Int J Pharma Bio Sci. https://doi.org/10.22376/ijpbs/lpr.2019.9.3.L11-21

    Article  Google Scholar 

  30. Pietras EM, Warr MR, Passegué E (2011) Cell cycle regulation in hematopoietic stem cells. J Cell Biol 195:709–720. https://doi.org/10.1083/jcb.201102131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang X, Dong F, Zhang S et al (2018) TGF-β1 negatively regulates the number and function of hematopoietic stem cells. Stem Cell Reports 11:274–287. https://doi.org/10.1016/j.stemcr.2018.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paluru P, Hudock KM, Cheng X et al (2014) The negative impact of Wnt signaling on megakaryocyte and primitive erythroid progenitors derived from human embryonic stem cells. Stem Cell Res 12:441–451. https://doi.org/10.1016/j.scr.2013.12.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was conducted with the financial support of Isfahan University of Medical Sciences (IRAN) with Grant Number: 396739.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Sharifi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

This study was approved by the local Ethics Committee of Isfahan University of Medical Sciences (IRAN); the current work was also approved by the relevant institutional and/or national research Ethics Committee and were performed in per under the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, P., Sharifi, M. & Ghadiri, A. Downregulation of MIR100HG Induces Apoptosis in Human Megakaryoblastic Leukemia Cells. Indian J Hematol Blood Transfus 37, 232–239 (2021). https://doi.org/10.1007/s12288-020-01324-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12288-020-01324-6

Keywords

Navigation