Skip to main content
Log in

A review of dynamic models and measurements in golf

  • Invited Paper
  • Published:
Sports Engineering Aims and scope Submit manuscript

Abstract

A narrative review of dynamic models of golf phenomena is presented, as well as current technologies for measuring the motions of a golfer, club, and ball. Kinematic and dynamic models of the golf swing are reviewed, including models with prescribed motions or torques as inputs, and predictive dynamic models that maximize an objective (e.g., driving distance) to determine optimal inputs or equipment designs. Impulse–momentum and continuous contact dynamic models for clubhead–ball and ball–ground impacts are described. The key observations from 172 cited references are extracted and presented, along with suggestions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. A green is reached in regulation if the number of shots required is 2 less than the par for the hole, e.g., 3 or fewer shots are needed to land on the green of a par-5 hole.

  2. The “gear effect” refers to the tendency of the clubhead and ball to rotate in opposite directions following impact. In Fig. 5, the horizontal gear effect implies that a clubhead rotating clockwise after impact will impart a counter-clockwise spin to the ball, and vice versa. For impacts above the sweet spot on the clubface, the vertical gear effect reduces the amount of backspin caused by the club loft.

  3. A Stimpmeter is a ramp that launches a ball with a repeatable speed on a green; the distance traveled (in feet) is the Stimpmeter reading of green speed.

References

  1. PGA Tour Statistics (2022) https://www.pgatour.com/content/pgatour/stats/. Accessed 13 Mar

  2. Bejan A et al (2013) The constructal evolution of sports with throwing motion: baseball, golf, hockey, and boxing. Int J Des Nat Ecodynamics 8:1–16. https://doi.org/10.2495/DNE-V8-N1-1-16

    Article  Google Scholar 

  3. Myers A (2017) You won’t believe how much farther PGA Tour Champions players are hitting the ball now than in their primes. https://www.golfdigest.com/story/you-wont-believe-how-much-farther-pga-tour-champions-players-are-hitting-the-ball-now-than-in-their-primes. Accessed 13 Mar 2022

  4. Cochran A (2002) The impact of science and technology on golf equipment — a personal view. In: Ujihashi S, Haake S (eds) The engineering of sport 4. Blackwell Science, pp 3–15

    Google Scholar 

  5. Schupak A (2018) Golf is the no.1 U.S. sport ... for patents. https://www.ngf.org/news/2018/04/golf-is-the-no-1-u-s-sport-for-patents/. Accessed 27 Sept 2021

  6. United States Patent and Trademark Office (2022) https://www.uspto.gov/. Accessed 30 Mar

  7. Farrally M et al (2003) Golf science research at the beginning of the twenty-first century. J Sports Sci 21:753–765. https://doi.org/10.1080/0264041031000102123

    Article  Google Scholar 

  8. Penner AR (2003) The physics of golf. Rep Prog Phys 66:131–171. https://doi.org/10.1088/0034-4885/66/2/202

    Article  Google Scholar 

  9. Betzler N, Monk S, Wallace E, Otto S, Shan G (2008) From the double pendulum model to full-body simulation: evolution of golf swing modeling. Sports Tech 1:175–188. https://doi.org/10.1002/jst.60

    Article  Google Scholar 

  10. Wallace E, Kieran K, Strangwood M, Kenny I (2008) Golf science. In: Reilly T (ed) Science and sports: bridging the gap. Shaker Publishing, pp 94–107

    Google Scholar 

  11. Jones K, Wallace E, Otto S (2018) Differences in the structure of variability in ground reaction force trajectories provide additional information about variability in the golf swing. IMechE J Sports Eng Tech 232:375–384. https://doi.org/10.1177/1754337118772418

    Article  Google Scholar 

  12. Bourgain M, Sauret C, Rouillon O, Thoreux P, Rouch P (2017) Contribution of vertical and horizontal components of ground reaction forces on global motor moment during a golf swing: a preliminary study. Comp Meth Biomech Biomed Eng 20:S29–S30. https://doi.org/10.1080/10255842.2017.1382845

    Article  Google Scholar 

  13. Peterson T, McNitt-Gray J (2018) Coordination of lower extremity multi-joint control strategies during the golf swing. J Biomech 77:26–33. https://doi.org/10.1016/j.jbiomech.2018.06.004

    Article  Google Scholar 

  14. Hume PA, Keogh J (2017) Movement analysis of the golf swing. In: Müller B, Wolf S (eds) Handbook of human motion. Springer, Cham, pp 1–18. https://doi.org/10.1007/978-3-319-30808-1_137-1

    Chapter  Google Scholar 

  15. Razavian RS, Greenberg S, McPhee J (2019) Biomechanics imaging and analysis. In: Narayan R (ed) Encyclopedia of biomedical engineering. vol: 2. Elsevier, pp 488–500

    Chapter  Google Scholar 

  16. Chu Y, Sell TC, Lephart SM (2010) The relationship between biomechanical variables and driving performance during the golf swing. J Sports Sci 28:1251–1259. https://doi.org/10.1080/02640414.2010.507249

    Article  Google Scholar 

  17. Lampsa M (1975) Maximizing distance of the golf drive: an optimal control study. J Dyn Sys Meas Control 97:362–367. https://doi.org/10.1115/1.3426951

    Article  Google Scholar 

  18. Choi A, Joo S-B, Oh E, Mun JH (2014) Kinematic evaluation of movement smoothness in golf: relationship between the normalized jerk cost of body joints and the clubhead. Biomed Eng Online 13:20. http://www.biomedical-engineering-online.com/content/13/1/20. Accessed 31 Mar 2022

  19. Delphinus E, Sayers M (2012) Putting proficiency: contributions of the pelvis and trunk. Sports Biomech 11:212–222. https://doi.org/10.1080/14763141.2011.638723

    Article  Google Scholar 

  20. Neal R, Lumsden R, Holland M, Mason B (2007) Body segment sequencing and timing in golf. Int J Sports Sci Coach 2:25–36. https://doi.org/10.1260/174795407789705497

    Article  Google Scholar 

  21. Tinmark F, Hellström J, Halvorsen K, Thorstensson A (2010) Elite golfers’ kinematic sequence in full-swing and partial-swing shots. Sports Biomech 9:236–244. https://doi.org/10.1080/14763141.2010.535842

    Article  Google Scholar 

  22. MacKenzie SJ, Sprigings EJ (2009) A three-dimensional forward dynamics model of the golf swing. Sports Eng 11:165–175. https://doi.org/10.1007/s12283-009-0020-9

    Article  Google Scholar 

  23. Seaman A, McPhee J (2012) Comparison of optical and inertial tracking of full golf swings. Procedia Eng 34:461–466. https://doi.org/10.1016/j.proeng.2012.04.079

    Article  Google Scholar 

  24. Lai D, Hetchl M, Wei XC, Ball K, Mclaughlin P (2011) On the difference in swing arm kinematics between low handicap golfers and non-golfers using wireless inertial sensors. Procedia Eng 13:219–225. https://doi.org/10.1016/j.proeng.2011.05.076

    Article  Google Scholar 

  25. Chun S et al (2014) A sensor-aided self coaching model for uncocking improvement in golf swing. Multimed Tools Appl 72:253–279. https://doi.org/10.1007/s11042-013-1359-2

    Article  Google Scholar 

  26. Lückemann P, Haid D, Brömel, Schwanitz S, Malwald C (2018) Validation of an inertial sensor system for swing analysis in golf. Proceedings 2:246. https://doi.org/10.3390/proceedings2060246

  27. Kim M, Park S (2020) Golf swing segmentation from a single IMU using machine learning. Sensors 20:4466. https://doi.org/10.3390/s20164466

    Article  Google Scholar 

  28. Goff J, Allen T (2020) Use of video for teaching sports mechanics, Proceedings 49:112. https://doi.org/10.3390/proceedings2020049112

  29. Kanko R, Laende E, Strutzenberger G, Brown M, Selbie S, DePaul V, Scott S, Deluzio K (2021) Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system. J Biomech 122:110414. https://doi.org/10.1016/j.jbiomech.2021.110414

    Article  Google Scholar 

  30. Park S, Chang JY, Jeong H, Lee J-H, Park J-Y (2017) Accurate and efficient 3D human pose estimation algorithm using single depth images for pose analysis in golf. IEEE CVPR Workshop, Honolulu, USA 105–113. https://doi.org/10.1109/CVPRW.2017.19

  31. Lv D, Huang Z, Sun L, Yu N, Wu J (2017) Smart motion reconstruction system for golf swing: a DBN model based transportable, non-intrusive and inexpensive golf swing capture and reconstruction system. Multimed Tools Appl 76:1313–1330. https://doi.org/10.1007/s11042-015-3102-7

    Article  Google Scholar 

  32. Mehta D et al (2017) VNect: real-time 3D human pose estimation with a single RGB camera. ACM Trans Graphics 36:44. https://doi.org/10.1145/3072959.3073596

    Article  Google Scholar 

  33. McNally W, Vats K, Pinto T, Dulhanty C, McPhee J, Wong A (2019) GolfDB: A Video Database for Golf Swing Sequencing. IEEE/CVF Computer Vision in Sports, Long Beach, USA 2553–2562. https://doi.org/10.1109/CVPRW.2019.00311

  34. Ko K-R, Pan SB (2021) CNN and bi-LSTM based 3D golf swing analysis by frontal swing sequence images. Multimed Tools Apps 80:8957–8972. https://doi.org/10.1007/s11042-020-10096-0

    Article  Google Scholar 

  35. McNally W, Vats K, Wong A, McPhee J (2022) Rethinking keypoint representations: modeling keypoints and poses as objects for multi-person human pose estimation. Arxiv 2111.08557. https://doi.org/10.48550/arXiv.2111.08557

  36. Wang J et al (2021) Deep 3d human pose estimation: a review. Comp Vision Image Understand 210:103225. https://doi.org/10.1016/j.cviu.2021.103225

    Article  Google Scholar 

  37. Koike S, Iida H, Shiraki H, Ae M (2006) An instrumented grip handle for golf clubs to measure forces and moments exerted by each hand during swing motion. The engineering of sport 6. Springer. https://doi.org/10.1007/978-0-387-46050-5_25

    Chapter  Google Scholar 

  38. Budney D (1979) Measuring grip pressure during the golf swing. Research Quart 50:272–277. https://doi.org/10.1080/10671315.1979.10615610

    Article  Google Scholar 

  39. Komi E, Roberts J, Rothberg S (2008) Measurement and analysis of grip force during a golf shot. IMechE J Sports Eng Tech 222:23–35. https://doi.org/10.1243/17543371JSET9

    Article  Google Scholar 

  40. Barton B (2016) Smart, connected IoT golf grip with PGA Tour professional Bryson DeChambeau and Microsoft partner Sensoria. https://microsoft.github.io/techcasestudies/iot/2016/11/23/senpga.html. Accessed 11 Apr 2022

  41. McHardy A, Pollard H (2005) Muscle activity during the golf swing. Br J Sports Med 39:799–804. https://doi.org/10.1136/bjsm.2005.020271

    Article  Google Scholar 

  42. Marta S, Silva L, Castro M, Pezarat-Correia P, Cabri J (2012) Electromyograhpy variables during the golf swing: a literature review. J Electromyogr Kinesiol 22:803–813. https://doi.org/10.1016/j.jelekin.2012.04.002

    Article  Google Scholar 

  43. Verikas A, Vaiciukynas E, Gelzinis A, Parker J, Charlotte Olsson M (2016) Electromyographic patterns during golf swing: activation sequence profiling and prediction of shot effectiveness. Sensors 16:592. https://doi.org/10.3390/s16040592

    Article  Google Scholar 

  44. Lagos L, Vaschillo E, Vaschillo B, Lehrer P, Bates M, Pandina R (2011) Virtual reality-assisted heart rate variability biofeedback as a strategy to improve golf performance: a case study. Biofeedback 39:15–20. https://doi.org/10.5298/1081-5937-39.1.11

    Article  Google Scholar 

  45. Ji L, Wang H, Zheng TQ, Hua CC, Zhang NN (2019) Correlation analysis of EEG alpha rhythm is related to golf putting performance. Biomed Signal Proc Control 49:124–136. https://doi.org/10.1016/j.bspc.2018.11.009

    Article  Google Scholar 

  46. The R &A, USGA (2019) The equipment rules. https://www.usga.org/equipment-standards/equipment-rules-for-2019.html. Accessed 31 Mar 2022

  47. Lückemann, Forrester S, Mears A, Shepherd J, Roberts J (2020) Assessment of measurement uncertainty in optical marker tracking of high-speed motion. Proceedings 49:72. https://doi.org/10.3390/proceedings2020049072

  48. Betzler N, Kratzenstein S, Schweizer F, Witte K, Shan G (2006) 3D motion analysis of golf swings: development and validation of a golf-specific test set-up. 9th Symposium on 3D Analysis of Human Movement, Valenciennes, France. http://www.univ-valenciennes.fr/congres/3D2006/. Accessed 31 Mar 2022

  49. Ellis K, Roberts J, Sanghera J (2010) Development of a method for monitoring clubhead path and orientation through impact. Procedia Eng 2:2955–2960. https://doi.org/10.1016/j.proeng.2010.04.094

    Article  Google Scholar 

  50. Betzler N, Monk S, Wallace E, Otto S (2012) Variability in clubhead presentation characteristics and ball impact location for golfers’ drives. J Sports Sci 30:439–448. https://doi.org/10.1080/02640414.2011.653981

    Article  Google Scholar 

  51. Corke T, Betzler N, Wallace E, Otto S (2019) A novel system for tracking iron golf clubheads. J Sports Eng Tech 233:59–66. https://doi.org/10.1177/1754337118792798

    Article  Google Scholar 

  52. Wood P, Henrikson E, Broadie C (2018) The influence of face angle and club path on the resultant launch angle of a golf ball. Proceedings 2:249. https://doi.org/10.3390/proceedings2060249

  53. Haeufle D, Worobets J, Wright I, Haeufle J, Stefanyshyn D (2012) Golfers do not respond to changes in shaft mass properties in a mechanically predictable way. Sports Eng 14:215–220. https://doi.org/10.1007/s12283-012-0104-9

    Article  Google Scholar 

  54. Pickering WM, Vickers GT (1999) On the double pendulum model of the golf swing. Sports Eng 2:161–172. https://doi.org/10.1046/j.1460-2687.1999.00028.x

    Article  Google Scholar 

  55. Worobets J, Stefanyshyn D (2012) The influence of golf club shaft stiffness on clubhead kinematics at ball impact. Sports Biomech 11:239–248. https://doi.org/10.1080/14763141.2012.674154

    Article  Google Scholar 

  56. Mase T, Timms M, West C (2006) Player fitting of golf equipment using a calibration club. The Engineering of Sport 6. Springer, pp 341–346

    Google Scholar 

  57. McNally W, McPhee J (2020) Investigating the influence of shaft balance point on clubhead speed: a simulation study. Proceedings 49:156. https://doi.org/10.3390/proceedings2020049156

  58. Mackenzie S, Henrikson E (2018) Influence of toe-hang versus face-balanced putter design on golfer applied kinetics. Proceedings 2:244. https://doi.org/10.3390/proceedings2060244

  59. Shimizu T et al (2009) An analysis of the putter face control mechanism in golf putting. Sports Eng 12:21–30. https://doi.org/10.1007/s12283-009-0025-4

    Article  Google Scholar 

  60. Betzler N, Monk S, Wallace E, Otto S (2012) Effects of golf shaft stiffness on strain, clubhead presentation and wrist kinematics. Sports Biomech 11:223–238. https://doi.org/10.1080/14763141.2012.681796

    Article  Google Scholar 

  61. MacKenzie S, Boucher D (2018) The influence of golf shaft stiffness on grip and clubhead kinematics. J Sports Sci 35:105–111. https://doi.org/10.1080/02640414.2016.1157262

    Article  Google Scholar 

  62. MacKenzie SJ, Sprigings EJ (2009) Understanding the role of shaft stiffness in the golf swing. Sports Eng 12:13–19. https://doi.org/10.1007/s12283-009-0028-1

    Article  Google Scholar 

  63. McNally W, Henrikson E, McPhee J (2019) A continuous analytical shaft model for fast dynamic simulation of the golf swing. Sports Eng 22:20. https://doi.org/10.1007/s12283-019-0314-5

    Article  Google Scholar 

  64. Milne R, Davis J (1992) The role of the golf shaft in the golf swing. J Biomech 25:975–983. https://doi.org/10.1016/0021-9290(92)90033-W

    Article  Google Scholar 

  65. Newman S, Clay S, Strickland P (1997) The dynamic flexing of a golf club shaft during a typical swing. IEEE Conf Mechatronics Mach Vision Practice 265–270. https://doi.org/10.1109/MMVIP.1997.625343

  66. Betzler N, Slater C, Strangwood M, Monk S, Otto S, Wallace E (2011) The static and dynamic stiffness behaviour of composite golf shafts and their constituent materials. Sports Eng 14:27–37. https://doi.org/10.1007/s12283-011-0068-1

    Article  Google Scholar 

  67. Jones K, Betzler N, Wallace E, Otto S (2019) Differences in shaft strain patterns during golf drives due to stiffness and swing effects. Sports Eng 22:14. https://doi.org/10.1007/s12283-019-0308-3

    Article  Google Scholar 

  68. King K, Yoon S, Perkins N, Najafi K (2008) Wireless MEMS inertial sensor system for golf swing dynamics. Sensors Act A 141:619–630. https://doi.org/10.1016/j.sna.2007.08.028

    Article  Google Scholar 

  69. Jensen U, Schmidt M, Hennig M, Dassler F, Jaitner T, Eskofier B (2015) An IMU-based mobile system for golf putt analysis. Sports Eng 18:123–133. https://doi.org/10.1007/s12283-015-0171-9

    Article  Google Scholar 

  70. Couceiro M, Araújo A, Pereira S (2015) InPutter: an engineered putter for on-the-fly golf putting analysis. Sports Tech 8:12–29. https://doi.org/10.1080/19346182.2015.1064129

    Article  Google Scholar 

  71. Jiao L, Wu H, Bie R, Umek A, Kos A (2018) Multi-sensor golf swing classification using deep CNN. Procedia Comp Sci 129:59–65. https://doi.org/10.1016/j.procs.2018.03.046

    Article  Google Scholar 

  72. Lombardo L, Iannucci L, Gullino A (2018) An inertial-based system for golf assessment. Int Instrum Measure Tech Conf 1–6. https://doi.org/10.1109/I2MTC.2018.8409822

  73. Marquardt C (2007) The SAM PuttLab: concept and PGA tour data. Int J Sports Sci Coach 2:101–120. https://doi.org/10.1260/174795407789705479

    Article  Google Scholar 

  74. Karlsen J, Smith G, Nilsson J (2008) The stroke has only a minor influence on direction consistency in golf putting among elite players. J Sports Sci 26:243–250. https://doi.org/10.1080/02640410701530902

    Article  Google Scholar 

  75. Sherwin I, Kenny I (2017) Putting movement and performance outcome using standard, belly and long putters. Int J Sports Sci Coach 12:532–539. https://doi.org/10.1177/1747954117717880

    Article  Google Scholar 

  76. MacKenzie S, Evans D (2010) Validity and reliability of a new method for measuring putting stroke kinematics using the TOMI system. J Sports Sci 28:891–899. https://doi.org/10.1080/02640411003792711

    Article  Google Scholar 

  77. Ferguson S, McNally W, McPhee J (2022) Predicting the Flight of a Golf Ball: Comparing a Physics-Based Aerodynamic Model to a Neural Network. The Engineering of Sport 14, USA. https://doi.org/10.5703/1288284317493

  78. Leach R, Forrester S, Mears A, Roberts J (2017) How valid and accurate are measurements of golf impact parameters obtained using commercially available radar and stereoscopic optical launch monitors? Measurement 112:125–136. https://doi.org/10.1016/j.measurement.2017.08.009

    Article  Google Scholar 

  79. MacKenzie S, Ryan B, Rice A (2015) The influence of clubhead mass on clubhead and golf ball kinematics. Int J Golf Sci 4:136–146. https://doi.org/10.1123/ijgs.2015-0011

    Article  Google Scholar 

  80. Stefanyshyn D, Wannop J (2015) Biomechanics research and sport equipment development. Sports Eng 18:191–202. https://doi.org/10.1007/s12283-015-0183-5

    Article  Google Scholar 

  81. Vena A, Budney D, Forest T, Carey J (2011) Three-dimensional kinematic analysis of the golf swing using instantaneous screw axis theory, Part 2: golf swing kinematic sequence. Sports Eng 13:125–133. https://doi.org/10.1007/s12283-010-0059-7

    Article  Google Scholar 

  82. Uchida T, Delp S (2020) Biomechanics of movement. MIT Press

    Google Scholar 

  83. Willams D (1967) The dynamics of the golf swing. Quart J Mech Appl Math. https://doi.org/10.1093/qjmam/20.2.247

    Article  Google Scholar 

  84. Cochran AJ, Stobbs J (1968) The search for the perfect swing. Morrison & Gibb Ltd, London

    Google Scholar 

  85. Vaughan C (1981) A three-dimensional analysis of the forces and torques applied by a golfer during the downswing. Biomechanics VII-B. In: Fidelus K, Kedzior K, Witt A (eds) Morecki A. University Park Press, Baltimore, pp 325–331

    Google Scholar 

  86. Neal R, Wilson B (1985) Kand kinetics of the golf swing. Int J Sport Biomech 1:221–232. https://doi.org/10.1123/ijsb.1.3.221

    Article  Google Scholar 

  87. Nesbit S et al (1996) A discussion of iron golf club head inertia tensors and their effects on the golfer. J Appl Biomech 12:449–469. https://doi.org/10.1123/jab.12.4.449

    Article  Google Scholar 

  88. Sandhu S, Millard M, McPhee J, Brekke D (2010) 3D dynamic modelling and simulation of a golf drive. Procedia Eng 2:3243–3248. https://doi.org/10.1016/j.proeng.2010.04.139

    Article  Google Scholar 

  89. Furukawa K, Tsujiuchi N, Ito A, Matsumoto K, Ueda M, Okazaki K (2018) The influence of the grip acceleration on club head rotation during a golf swing. Proceedings 2:241. https://doi.org/10.3390/proceedings2060241

  90. Tanaka K, Sekizawa K (2018) Construction of a finite element model of golf clubs and influence of shaft stiffness on its dynamic behavior. Proceedings 2:247. https://doi.org/10.3390/proceedings2060247

  91. Nesbit S (2007) Development of a full-body biomechanical model of the golf swing. Int J Model Sim 27:392–404. https://doi.org/10.1080/02286203.2007.11442442

    Article  Google Scholar 

  92. Demircan E, Besier T, Khatib O (2012) Muscle force transmission to operational space accelerations during elite golf swings. Conf. Robotics Automation, Saint Paul, Minnesota, USA, IEEE Int. https://doi.org/10.1109/ICRA.2012.6225336

  93. Smith A, Roberts J, Wallace E, Kong P, Forrester S (2016) Comparison of two- and three-dimensional methods for analysis of trunk kinematic variables in the golf swing. J Appl Biomech 32:23–31. https://doi.org/10.1123/jab.2015-0032

    Article  Google Scholar 

  94. Bourgain M, Hybois S, Thoreux P, Rouillon O, Rouch P, Sauret C (2018) Effect of shoulder model complexity in upper-body kinematics analysis of the golf swing. J Biomech 75:154–158. https://doi.org/10.1016/j.jbiomech.2018.04.025

    Article  Google Scholar 

  95. Choi H, Park S (2020) Three dimensional upper limb joint kinetics of a golf swing with measured internal grip force. Sensors 20:3672. https://doi.org/10.3390/s20133672

    Article  Google Scholar 

  96. Takagi T, Murata M, Yokozawa T, Shiraki H (2021) Dynamics of pelvis rotation about its longitudinal axis during the golf swing. Sports Biomech 20:583–602. https://doi.org/10.1080/14763141.2019.1585472

    Article  Google Scholar 

  97. Shourijeh M, Mehrabi N, McPhee J (2017) Forward static optimization in dynamic simulation of human musculoskeletal systems: a proof-of-concept study. ASME J Comput Nonlin Dyn 12:051005. https://doi.org/10.1115/1.4036195

    Article  Google Scholar 

  98. Jorgensen T (1994) The physics of golf. AIP Press, New York

    Google Scholar 

  99. Chen C, Inoue Y, Shibara K (2007) Numerical study on the wrist action during the golf downswing. Sports Eng 10:23–31. https://doi.org/10.1007/BF02844199

    Article  Google Scholar 

  100. Suzuki S, Haake S, Heller B (2006) Multiple modulation torque planning for a new golfswing robot with a skilful wrist turn. Sports Eng 9:201–228. https://doi.org/10.1007/BF02866058

    Article  Google Scholar 

  101. Suzuki S, Hoshino Y, Kobayashi Y (2009) Skill analysis of the wrist release in the golf swings utilizing shaft elasticity. J Sys Design Dyn 3:47–58. https://doi.org/10.1299/jsdd.3.47

    Article  Google Scholar 

  102. Lee C, Park S (2018) Estimation of unmeasured golf swing of arm based on the swing dynamics. Int J Precision Eng Manu 19:745–751. https://doi.org/10.1007/s12541-018-0089-9

    Article  Google Scholar 

  103. McGuan A (1996) Exploring human adaptation using optimized, dynamic human models. 20th Annual Meeting of American Society of Biomechanics, Atlanta, USA

  104. Kenny IC, McCloy AJ, Wallace ES, Otto SR (2008) Segmental sequencing of kinetic energy in a computer-simulated golf swing. Sports Eng 11:37–45. https://doi.org/10.1007/s12283-008-0005-0

    Article  Google Scholar 

  105. Choppin S, Allen T (2012) Special issue on predictive modelling in sport. IMechE J Sports Eng Tech 226:75–76. https://doi.org/10.1177/1754337112443933

    Article  Google Scholar 

  106. Rao A (2009) A survey of numerical methods for optimal control. Adv Astro Sci 135:497–528

    Google Scholar 

  107. Campbell K, Reid R (1985) The application of optimal control theory to simplified models of complex human motions: the golf swing. In: Norman R, Wells R, Hayes K, Patla A, Winter D (eds) Biomechanics IX-B. Human Kinetics, Baltimore, USA, pp 527–538

  108. Kaneko Y, Sato F (2000) The adaptation of golf swing to inertia property of golf club. In: Subic A, Haake S (eds) The engineering of sport. Blackwell Science, London, pp 469–476

    Google Scholar 

  109. Ming A, Mita T, Dhlamini S, Kajitani M (2001) Motion control skill in human hyper dynamic manipulation: an investigation on the golf swing by simulation. Proceedings IEEE Comp Intel Rob Auto 47–52. https://doi.org/10.1109/CIRA.2001.1013171

  110. Sharp R (2009) On the mechanics of the golf swing. Proc R Soc A 465:551–570. https://doi.org/10.1098/rspa.2008.0304

    Article  MathSciNet  MATH  Google Scholar 

  111. Sprigings E, Neal R (2000) An insight into the importance of wrist torque in driving the golfball: a simulation study. J Appl Biomech 16:356–366. https://doi.org/10.1123/jab.16.4.356

    Article  Google Scholar 

  112. MacKenzie SJ, Sprigings EJ (2010) Understanding the mechanisms of shaft deflection in the golf swing. Sports Eng 12:69–75. https://doi.org/10.1007/s12283-010-0034-3

    Article  Google Scholar 

  113. Balzerson D, Banerjee J, McPhee J (2016) A three-dimensional forward dynamic model of the golf swing optimized for ball carry distance. Sports Eng 19:237–250. https://doi.org/10.1007/s12283-016-0197-7

    Article  Google Scholar 

  114. Yamaguchi G (2001) Dynamic modeling of musculoskeletal motion. Springer. https://doi.org/10.1007/978-0-387-28750-8

    Book  MATH  Google Scholar 

  115. Brown C, McNally W, McPhee J (2020) Optimal control of joint torques using direct collocation to maximize ball carry distance in a golf swing. Multibody Sys Dyn 50:323–333. https://doi.org/10.1007/s11044-020-09734-0

    Article  MathSciNet  MATH  Google Scholar 

  116. McNally W, McPhee J (2018) Dynamic optimization of the golf swing using a six degree-of-freedom biomechanical model. Proceedings 2:243. https://doi.org/10.3390/proceedings2060243

  117. Ferguson S, McNally W, McPhee J (2022) The effect of club length, face bulge radius, and center of gravity depth on optimal golf drives – a simulation study. Engineering of Sport 14, USA. https://doi.org/10.5703/1288284317486

  118. Ezati M, Ghannadi B, McPhee J (2019) A review of simulation methods for human movement dynamics with emphasis on gait. Multibody Sys Dyn 47:265–292. https://doi.org/10.1007/s11044-019-09685-1

    Article  MathSciNet  MATH  Google Scholar 

  119. USGA and R &A (2021) A review of driving distance - 2021. https://www.usga.org/content/usga/home-page/equipment-standards/notices-and-announcements-47d84789/driving-distance-reports.html

  120. Gilardi G, Sharf I (2002) Literature survey of contact dynamics modelling. Mech Mach Theory 37:1213–1239. https://doi.org/10.1016/S0094-114X(02)00045-9

    Article  MathSciNet  MATH  Google Scholar 

  121. Corral et al (2021) Nonlinear phenomena of contact in multibody systems dynamics: a review. Nonlin Dyn 104:1269–1295. https://doi.org/10.1007/s11071-021-06344-z

    Article  MathSciNet  Google Scholar 

  122. Daish CB (1972) The physics of ball games. The English Universities Press

    MATH  Google Scholar 

  123. Brach R (1991) Mechanical impact dynamics: rigid body collisions. Wiley

    Google Scholar 

  124. Winfield D, Tan T (1994) Optimization of clubhead loft and swing elevation angles for maximum distance of a golf drive. Comp Struct 53:19–25. https://doi.org/10.1016/0045-7949(94)90125-2

    Article  MATH  Google Scholar 

  125. Penner AR (2001) The physics of golf: the optimum loft of a driver. Amer J Phys 69:563–568. https://doi.org/10.1119/1.1344164

    Article  Google Scholar 

  126. Penner AR (2001) The physics of golf: the convex face of a driver. Amer J Phys 69:1073–1081. https://doi.org/10.1119/1.1380380

    Article  Google Scholar 

  127. Petersen W, McPhee J (2008) Comparison of impulse-momentum and finite element models for impact between golf ball and clubhead. World Scientific Congress of Golf V, Arizona, pp 477–485

    Google Scholar 

  128. Dewhurst P (2015) The science of the perfect swing. Oxford University Press

    Google Scholar 

  129. Lindsay N (2003) Topspin in putters — a study of vertical gear-effect and its dependence on shaft coupling. Sports Eng 6:81–93. https://doi.org/10.1007/BF02903530

    Article  Google Scholar 

  130. Brouillette M (2010) Putter features that influence the rolling motion of a golf ball. Procedia Eng 2:3223–3229. https://doi.org/10.1016/j.proeng.2010.04.136

    Article  Google Scholar 

  131. Lambeth J, Brekke D, Brunski J (2020) Exploration of center of gravity, moment of inertia, and launch direction for putters with ball speed normalizing face properties. Proceedings 49:2. https://doi.org/10.3390/proceedings2020049002

  132. Cross R, Dewhurst P (2018) Launch speed, angle and spin in golf. Eur J Phys 39:065003. https://doi.org/10.1088/1361-6404/aadda8

    Article  Google Scholar 

  133. Cross R (2002) Grip-slip behavior of a bouncing ball. Amer J Phys 70:1093–1102. https://doi.org/10.1119/1.1507792

    Article  Google Scholar 

  134. Cross R, Nathan A (2009) Performance versus moment of inertia of sporting implements. Sports Tech 2:7–15. https://doi.org/10.1002/jst.88

    Article  Google Scholar 

  135. McNally W, McPhee J, Henrikson E (2018) The golf shaft’s influence on clubhead-ball impact dynamics. Proceedings 2:245. https://doi.org/10.3390/proceedings2060245

  136. Danaei B, McNally W, Henrikson E, McPhee J (2020) Adjusting a momentum-based golf clubhead-ball impact model to improve accuracy. Proceedings 49:47. https://doi.org/10.3390/proceedings2020049047

  137. Caldwell A, McPhee J (2022) Comparison of Three-dimensional Dynamic Models for Golf Clubhead-ball Impacts. The Engineering of Sport 14, USA. https://doi.org/10.5703/1288284317484

  138. Tanaka K, Sato F, Oodaira H, Teranishi Y, Sato F, Ujihashi S (2006) Construction of the finite-element models of golf balls and simulations of their collisions. IMechE J Mater Design App 220:13–22. https://doi.org/10.1243/14644207JMDA80

    Article  Google Scholar 

  139. Chou PC, Liang D, Yang J, Gobush W (1994) Contact forces, coefficient of restitution, and spin rate of golf ball impact. World Scientific Congress of Golf II, St. Andrews, pp 359–365

    Google Scholar 

  140. Tavares G, Sullivan M, Nesbitt D (1999) Use of finite element analysis in design of multilayer golf balls. World Scientific Congress of Golf III, St. Andrews, pp 473–480

    Google Scholar 

  141. Iwatsubo T, Kawamura S, Kazuyoshi M, Yamaguchi T (2000) Numerical analysis of golf club head and ball at various impact points. Sports Eng 3:195–204. https://doi.org/10.1046/j.1460-2687.2000.00055.x

    Article  Google Scholar 

  142. Tanaka K, Oodaira H, Teranishi Y, Sato F, Ujihashi S (2009) Finite-element analysis of the collision and bounce between a golf ball and simplified clubs. The engineering of sport 7. Springer, France, pp 653–662

    Chapter  Google Scholar 

  143. Nakai K, Wu Z, Sogabe Y, Arimitsu Y (2004) A study of thickness optimization of golf club heads to maximize release velocity of balls. Commun Num Meth Eng 20:747–755. https://doi.org/10.1002/cnm.698

    Article  MATH  Google Scholar 

  144. Petersen W, McPhee J (2009) Shape optimization of golf clubface using finite element impact models. Sports Eng 12:77–85. https://doi.org/10.1007/s12283-009-0030-7

    Article  Google Scholar 

  145. Wu Z, Tamaogi T, Sogabe Y, Arimitsu Y (2017) Design optimization of golf clubhead and ball with numerical analysis. Global J Research Eng 17:23–29

    Google Scholar 

  146. Mase T, Sharpe R, Volkoff-Shoemaker N, Moreira S (2012) Modeling the sound of a golf club. IMechE J Sports Eng Tech 226:107–113. https://doi.org/10.1177/1754337112442782

    Article  Google Scholar 

  147. Delaye et al (2016) Modelling the sound of a golf ball impacting a titanium plate. Procedia Eng 147(354):359. https://doi.org/10.1016/j.proeng.2016.06.309

    Article  Google Scholar 

  148. Roberts J, Jones R, Mansfield N, Rothberg S (2005) Evaluation of impact sound on the ‘feel’ of a golf shot. J Sound Vib 287:651–666. https://doi.org/10.1016/j.jsv.2004.11.026

    Article  Google Scholar 

  149. Hunt K, Crossley E (1975) Coefficient of restitution interpreted as damping in vibroimpact. J Appl Mech 42:440–445. https://doi.org/10.1115/1.3423596

    Article  Google Scholar 

  150. Brown P, McPhee J (2018) A 3D ellipsoidal volumetric foot-ground contact model for forward dynamics. Multibody Sys Dyn 42:447–467. https://doi.org/10.1007/s11044-017-9605-4

    Article  MathSciNet  MATH  Google Scholar 

  151. Lieberman B, Johnson S (1994) An analytical model for ball-barrier impact, part 1: models for normal impact. World Scientific Congress of Golf II, St. Andrews, pp 375–380

    Google Scholar 

  152. Johnson S, Lieberman B (1994) An analytical model for ball-barrier impact, part 2: a model for oblique impact. World Scientific Congress of Golf II, St. Andrews, pp 381–387

    Google Scholar 

  153. Cochran A (2002) Development and use of one-dimensional models of a golf ball. J Sports Sci 20:635–641. https://doi.org/10.1080/026404102320183202

    Article  Google Scholar 

  154. Arakawa K et al (2009) Dynamic deformation behavior of a golf ball during normal impact. Exp Mech 49:471–477. https://doi.org/10.1007/s11340-008-9156-y

    Article  Google Scholar 

  155. Arakawa K (2014) Effect of time derivative of contact area on dynamic friction. Appl Phys Lett 104:241603. https://doi.org/10.1063/1.4884055

    Article  Google Scholar 

  156. Arakawa K (2017) An analytical model of dynamic sliding friction during impact. Sci Rep 7:40102. https://doi.org/10.1038/srep40102

    Article  Google Scholar 

  157. Gonthier Y, McPhee J, Lange C (2007) On the implementation of Coulomb friction in a volumetric-based model for contact dynamics. ASME Int Design Eng Tech Conf, Las Vegas, USA 423–432. https://doi.org/10.1115/DETC2007-35311

  158. Brown P, McPhee J (2016) A continuous velocity-based friction model for dynamics and control with physically meaningful parameters. ASME J Comput Nonlin Dyn 11:054502. https://doi.org/10.1115/1.4033658

    Article  Google Scholar 

  159. Maw N, Barber J, Fawcett J (1976) The oblique impact of elastic spheres. Wear 38:101–114. https://doi.org/10.1016/0043-1648(76)90201-5

    Article  Google Scholar 

  160. R&A Rules Ltd., USGA. (2006). Interim Report on Study of Spin Generation. St Andrews, Liberty Corner: R&A Rules Ltd., United States Golf Association. https://www.usga.org/content/dam/usga/pdf/Equipment/R22-12%20Spin%20reduction%20modifications%20to%20existing%20irons.pdf

  161. Henrikson E, Wood P, Broadie C, Nuttall T (2020) The role of friction and tangential compliance on the resultant launch angle of a golf ball. Proceedings 49:27. https://doi.org/10.3390/proceedings2020049027

  162. Ma J et al (2021) A data-driven normal contact force model based on artificial neural network for complex contacting surfaces. Mech Sys Sig Proc 156:107612. https://doi.org/10.1016/j.ymssp.2021.107612

    Article  Google Scholar 

  163. Penner AR (2002) The run of a golf ball. Can J Phys 80:931–940. https://doi.org/10.1139/p02-035

    Article  Google Scholar 

  164. USGA and R &A (2021) Proposed bounce model for use in evaluating optimum overall distance. https://api.randa.org/en/news/2021/03/notice-to-golf-ball-manufacturers

  165. Haake SJ (1989) Apparatus and test methods for measuring the impact of golf balls on turf and their application in the field. PhD Thesis, Aston University, UK

  166. Roh W-J, Lee C-W (2010) Golf ball landing, bounce and roll on turf. Procedia Eng 2:3237–3242. https://doi.org/10.1016/j.proeng.2010.04.138

    Article  Google Scholar 

  167. Hubbard M, Alaways L (1998) Mechanical interaction of the golf ball with putting greens. World Scientific Congress of Golf III, St. Andrews, pp 429–439

    Google Scholar 

  168. Holmes B (1986) Dialogue concerning the stimpmeter. Phys Teach 24:401–404. https://doi.org/10.1119/1.2342065

    Article  Google Scholar 

  169. Daemi N, Henning S, Gibert J, Yuya P, Ahmadi G (2016) On generalized rolling of golf balls considering an cffset center of mass and rolling resistance: a study of putting. Sports Eng 19:35–46. https://doi.org/10.1007/s12283-015-0186-2

    Article  Google Scholar 

  170. Holmes B (1991) Putting: how a golf ball and hole interact. Am J Phys 59:129–135. https://doi.org/10.1119/1.16592

    Article  MathSciNet  Google Scholar 

  171. Kuchnicki S (2021) Interaction of a golf ball with the flagstick and hole. Sports Eng 24:8. https://doi.org/10.1007/s12283-021-00347-0

    Article  Google Scholar 

  172. Mase T (2019) https://www.golfdigest.com/story/the-science-behind-why-the-flagstick-should-be-pulled-999-percent-of-the-time. Accessed 15 Sept 2021

Download references

Acknowledgements

The author is grateful to his graduate student co-authors (see References) for many years of enjoyable research collaborations and discussions. The author is indebted to the pioneers of golf research, including Tait, Williams, Daish, Lampsa, and Cochran, for their seminal contributions. The ongoing support of the Equipment Editors (Mike Stachura, Mike Johnson) at Golf Digest is gratefully acknowledged, as is the encouragement and patience displayed by the Editor-in-Chief (Tom Allen) during a pandemic.

Funding

Funding of this work by the Canada Research Chairs program is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John McPhee.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McPhee, J. A review of dynamic models and measurements in golf. Sports Eng 25, 22 (2022). https://doi.org/10.1007/s12283-022-00387-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12283-022-00387-0

Keywords

Navigation