Skip to main content
Log in

Expression and purification of intracrine human FGF 11 and study of its FGFR-dependent biological activity

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Fibroblast growth factor 11 (FGF11) is one of intracrine FGFs (iFGFs), which function within cells. Unlike canonical FGFs, FGF11 remains intracellularly and plays biological roles in FGF receptor (FGFR)-independent manner. Here, we established an expression system of recombinant FGF11 proteins in E. coli and investigated whether the extracellular administration of FGF11 can activate cellular signaling. Human FGF11 has two isoforms, FGF11a and FGF11b, depending on the presence of nuclear localization sequences (NLSs) in the N-terminus. Because these two isoforms are unstable, we prepared an FGF11a-Mut by substituting three cysteine residues in the NLS with serine and FGF11b-ΔC with C-terminal truncation. The introduction of mutation in the NLS improved the solubility of FGF11 prepared from E. coli. Exogenous addition of FGF11b and FGF11b-ΔC to BALB3T3 increased cell proliferation, while FGF11a-Mut exerted no effect. FGF11b-ΔC showed higher cell proliferation activity and FGFR signaling than FGF11b. The cell-proliferating activities of FGF11b and FGF11b-ΔC were blocked by an FGFR1 inhibitor or a recombinant FGFR1, confirming the FGFR1-dependent extracellular activity of FGF11b. The analysis of circular dichroism suggested that the C-terminus of FGF11 has an α-helical structure, which may affect its interaction with FGFR1. These results suggest that the N-and C-terminus of recombinant FGF11 are involved in the activation of FGFR1. The above results provide novel insights into the function and mechanism of FGF11 that may aid the development of useful ligands for FGFR regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dimou, E. and Nickel, W. 2018. Unconventional mechanisms of eukaryotic protein secretion. Curr. Biol. 28, R406–R410.

    Article  CAS  PubMed  Google Scholar 

  • Goetz, R., Dover, K., Laezza, F., Shtraizent, N., Huang, X., Tchetchik, D., Eliseenkova, A.V., Xu, C.F., Neubert, T.A., Ornitz, D.M., et al. 2009. Crystal structure of a fibroblast growth factor homologous factor (FHF) defines a conserved surface on FHFs for binding and modulation of voltage-gated sodium channels. J. Biol. Chem. 284, 17883–17896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldfarb, M. 2005. Fibroblast growth factor homologous factors: evolution, structure, and function. Cytokine Growth Factor Rev. 16, 215–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh, N. and Ornitz, D.M. 2008. Functional evolutionary history of the mouse Fgf gene family. Dev. Dyn. 237, 18–27.

    Article  CAS  PubMed  Google Scholar 

  • Itoh, N. and Ornitz, D.M. 2011. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J. Biochem. 149, 121–130.

    Article  CAS  PubMed  Google Scholar 

  • Katoh, M. 2016. Therapeutics targeting FGF signaling network in human diseases. Trends Pharmacol. Sci. 37, 1081–1096.

    Article  CAS  PubMed  Google Scholar 

  • Knowles, H.J. 2017. Hypoxia-induced fibroblast growth factor 11 stimulates osteoclast-mediated resorption of bone. Calcif. Tissue Int. 100, 382–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laezza, F., Lampert, A., Kozel, M.A., Gerber, B.R., Rush, A.M., Nerbonne, J.M., Waxman, S.G., Dib-Hajj, S.D., and Ornitz, D.M. 2009. FGF14 N-terminal splice variants differentially modulate Nav1.2 and Nav1.6-encoded sodium channels. Mol. Cell. Neurosci. 42, 90–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, H., Lu, P., Zhou, M., Wu, F., Weng, L., Meng, K., Yang, D., Li, S., Jiang, C., and Tian, H. 2019. Purification of recombinant human fibroblast growth factor 13 in E. coli and its molecular mechanism of mitogenesis. Appl. Microbiol. Biotechnol. 103, 7017–7027.

    CAS  PubMed  Google Scholar 

  • Liu, P.C.C., Koblish, H., Wu, L., Bowman, K., Diamond, S., DiMatteo, D., Zhang, Y., Hansbury, M., Rupar, M., Wen, X., et al. 2020a. INCB054828 (pemigatinib), a potent and selective inhibitor of fibroblast growth factor receptors 1, 2, and 3, displays activity against genetically defined tumor models. PLoS ONE 15, e0231877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y.N., Yang, J.F., Huang, D.J., Ni, H.H., Zhang, C.X., Zhang, L., He, J., Gu, J.M., Chen, H.X., Mai, H.Q., et al. 2020b. Hypoxia induces mitochondrial defect that promotes T cell exhaustion in tumor microenvironment through MYC-regulated pathways. Front. Immunol. 11, 1906.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mossahebi-Mohammadi, M., Quan, M., Zhang, J.S., and Li, X. 2020. FGF signaling pathway: a key regulator of stem cell pluripotency. Front. Cell Dev. Biol. 8, 79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Munoz-Sanjuan, I., Smallwood, P.M., and Nathans, J. 2000. Isoform diversity among fibroblast growth factor homologous factors is generated by alternative promoter usage and differential splicing. J. Biol. Chem. 275, 2589–2597.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama, F., Yasuda, T., Umeda, S., Asada, M., Imamura, T., Meineke, V., and Akashi, M. 2011. Fibroblast growth factor-12 (FGF12) translocation into intestinal epithelial cells is dependent on a novel cell-penetrating peptide domain. J. Biol. Chem. 286, 25823–25834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam, K., Lee, K.W., Chung, O., Yim, H.S., Cha, S.S., Lee, S.W., Jun, J., Cho, Y.S., Bhak, J., Magalhaes, J.P., et al. 2017. Analysis of the FGF gene family provides insights into aquatic adaptation in cetaceans. Sci. Rep. 7, 40233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen, S.K., Garbi, M., Zampieri, N., Eliseenkova, A.V., Ornitz, D.M., Goldfarb, M., and Mohammadi, M. 2003. Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs. J. Biol. Chem. 278, 34226–34236.

    Article  CAS  PubMed  Google Scholar 

  • Schlessinger, J., Plotnikov, A.N., Ibrahimi, O.A., Eliseenkova, A.V., Yeh, B.K., Yayon, A., Linhardt, R.J., and Mohammadi, M. 2000. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell 6, 743–750.

    Article  CAS  PubMed  Google Scholar 

  • Smallwood, P.M., Munoz-Sanjuan, I., Tong, P., Macke, J.P., Hendry, S.H., Gilbert, D.J., Copeland, N.G., Jenkins, N.A., and Nathans, J. 1996. Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development. Proc. Natl. Acad. Sci. USA 93, 9850–9857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sochacka, M., Opalinski, L., Szymczyk, J., Zimoch, M.B., Czyrek, A., Krowarsch, D., Otlewski, J., and Zakrzewska, M. 2020. FHF1 is a bona fide fibroblast growth factor that activates cellular signaling in FGFR-dependent manner. Cell Commun. Signal. 18, 69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, Y., Su, N., Yang, J., Tan, Q., Huang, S., Jin, M., Ni, Z., Zhang, B., Zhang, D., Luo, F., et al. 2020. FGF/FGFR signaling in health and disease. Sig. Transduct. Target. Ther. 5, 181.

    Article  CAS  Google Scholar 

  • Yang, J., Kim, W.J., Jun, H.O., Lee, E.J., Lee, K.W., Jeong, J.Y., and Lee, S.W. 2015. Hypoxia-induced fibroblast growth factor 11 stimulates capillary-like endothelial tube formation. Oncol. Rep. 34, 2745–2751.

    Article  CAS  PubMed  Google Scholar 

  • Yeh, B.K., Igarashi, M., Eliseenkova, A.V., Plotnikov, A.N., Sher, I., Ron, D., Aaronson, S.A., and Mohammadi, M. 2003. Structural basis by which alternative splicing confers specificity in fibroblast growth factor receptors. Proc. Natl. Acad. Sci. USA 100, 2266–2271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun, Y.R., Won, J.E., Jeon, E., Lee, S., Kang, W., Jo, H., Jang, J.H., Shin, U.S., and Kim, H.W. 2010. Fibroblast growth factors: biology, function, and application for tissue regeneration. J. Tissue Eng. doi:https://doi.org/10.4061/2010/218142.

    Google Scholar 

  • Zhang, X., Bao, L., Yang, L., Wu, Q., and Li, S. 2012. Roles of intracellular fibroblast growth factors in neural development and functions. Sci. China Life Sci. 55, 1038–1044.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, M., Chen, J., Meng, K., Zhang, Y., Zhang, M., Lu, P., Feng, Y., Huang, M., Dong, Q., Li, X., et al. 2021. Production of bioactive recombinant human fibroblast growth factor 12 using a new transient expression vector in E. coli and its neuroprotective effects. Appl. Microbiol. Biotechnol. 105, 5419–5431.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, X., Komiya, H., Chirino, A., Faham, S., Fox, G.M., Arakawa, T., Hsu, B.T., and Rees, D.C. 1991. Three-dimensional structures of acidic and basic fibroblast growth factors. Science 251, 90–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was part of the project titled 'Development of biomedical materials based on marine proteins, funded by the Ministry of Oceans and Fisheries, Korea, and an in-house program (PEA0022) from the Korea Institute of Ocean Science & Technology (KIOST).

Author information

Authors and Affiliations

Authors

Contributions

JHL and HSY conceived and supervised the study; KWL, YJA, and JL designed and performed the experiments; YEJ, IYK, JJ, and JHP performed the experiments; KWL, KC, and SSC analyzed the data; KWL, YJA, JL, and HSY wrote the manuscript.

Corresponding authors

Correspondence to Jung-Hyun Lee or Hyung-Soon Yim.

Additional information

Conflict of Interest

The authors declare no conflict of interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K.W., An, Y.J., Lee, J. et al. Expression and purification of intracrine human FGF 11 and study of its FGFR-dependent biological activity. J Microbiol. 60, 1086–1094 (2022). https://doi.org/10.1007/s12275-022-2406-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-2406-3

Keywords

Navigation