Skip to main content

Abstract

Industrial requirements for α-amylase active at harsh industrial conditions have determined the interest in extremophilic producers suggesting unusual properties of their enzymes. This article discusses last ten years advances in knowledge on its synthesis from extremophiles, including thermophilic/thermoacidophilic, psychrophilic, and halophilic bacterial and archaeal producers. The examples of commercially exploited amylases from extremophiles are limited due to the special conditions for their production and low level of enzyme yield in the case of thermophiles. However, the industrial requirement for enzymes active at harsh industrial conditions as well as developments in cultivation of extremophiles renewed interest towards the biocatalytic applications of amylolytic extremozymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4:117–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Agüloglu S, Enez B, Özdemir S, Matpan-Bekler F (2014) Purification and characterization of thermostable α-amylase from thermophilic Anoxybacillus flavithermus. Carbohydr Polym 102:144–150

    Article  Google Scholar 

  • Bai Y, Huang H, Meng K et al (2012) Identification of an acidic α-amylase from Alicyclobacillus sp. A4 and assessment of its application in the starch industry. Food Chem 131:1473–1478

    Article  CAS  Google Scholar 

  • Ballschmiter M, Fütterer O, Liebl W (2006) Identification and characterization of a novel intracellular alkaline α-amylase from the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl Eviron Microbiol 72:2206–2211

    Article  CAS  Google Scholar 

  • Bertoldo C, Antranikian G (2002) Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr Opin Chem Biol 6:151–160

    Article  CAS  PubMed  Google Scholar 

  • Callen W, Richardson T, Frey G et al (2012) Amylases and methods for use in starch processing. US Patent 8,338,131, 25 Dec 2012

    Google Scholar 

  • Chai YY, Rahman RNZRA, Illias RM et al (2012) Cloning and characterization of two new thermostable and alkalitolerant α-amylases from the Anoxybacillus species that produce high levels of maltose. J Ind Microbiol Biotechnol 39:731–741

    Article  CAS  PubMed  Google Scholar 

  • EASAC (2012) The current status of biofuels in the European Union, their environmental impacts and future prospects. EASAC Policy Report 19. http://www.easac.eu

  • Egorova K, Antranikian G (2005) Industrial relevance of thermophilic Archaea. Curr Opin Microbiol 8:649–655

    Article  CAS  PubMed  Google Scholar 

  • Emtenani S, Asoodeh A, Emtenani S (2015) Gene cloning and characterization of a thermostable organic-tolerant α-amylase from Bacillus subtilis DR8806. Int J Biol Macromol 72:290–298

    Article  CAS  PubMed  Google Scholar 

  • Jabbour D, Sorger A, Sahm K et al (2013) A highly thermoactive and salt-tolerant α-amylase isolated from a pilot-plant biogas reactor. Appl Microbiol Biotechnol 97:2971–2978

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Cai M, Huang M et al (2015) Characterization of a thermostable raw-starch hydrolyzing α-amylase from deep-sea thermophile Geobacillus sp. Protein Expr Purif 114:15–22

    Article  CAS  PubMed  Google Scholar 

  • Jyoti J, Lal N, Lal R et al (2009) Production of thermostable and acidophilic amylase from thermophilic Bacillus licheniformis JAR-26. J Appl Biol Sci 3:7–12

    Google Scholar 

  • Khodayari F, Cebeci Z, Ozcan BD et al (2014) Improvement of ezyme ativity of a novel native alkaline and thermophile Bacillus sp. CU-48, producing α-amylase and CMCase by mutagenesis. Int J Chem Nat Sci 2:97–103

    Google Scholar 

  • Kim JW, Kim YH, Lee HS et al (2007) Molecular cloning and biochemical characterization of the first archaeal maltogenic amylase from the hyperthermophilic archaeon Thermoplasma volcanium GSS1. Biochim Biophys Acta 1774:661–669

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Khare SK (2012) Purification and characterization of maltooligosaccharide-forming α-amylase from moderately halophilic Marinobacter sp. EMB8. Bioresour Technol 116:247–251

    Article  CAS  PubMed  Google Scholar 

  • Li D, Park JT, Li X et al (2010) Overexpression and characterization of an extremely thermostable maltogenic amylase, with an optimal temperature of 100 degrees C, from the hyperthermophilic archaeon Staphylothermus marinus. N Biotechnol 27:300–307

    Article  PubMed  Google Scholar 

  • Li X, Li D, Park KH (2013) An extremely thermostable amylopullulanase from Staphylothermus marinus displays both pullulan- and cyclodextrin-degrading activities. Appl Microbiol Biotechnol 97:5359–5369

    Article  CAS  PubMed  Google Scholar 

  • Liebl W, Angelov A, Juergensen J et al (2014) Alternative hosts for functional (meta) genome analysis. Appl Microbiol Biotechnol 98:8099–8109

    Article  CAS  PubMed  Google Scholar 

  • Lim JK, Lee HS, Kim YJ et al (2007) Critical factors to high thermostability of an alpha-amylase from hyperthermophilic archaeon Thermococcus onnurineus NA1. J Microbiol Biotechnol 17:1242–1248

    CAS  PubMed  Google Scholar 

  • Mesbah NM, Wiegel J (2014) Halophilic alkali-and thermostable amylase from a novel polyextremophilic Amphibacillus sp. NM-Ra2. Int J Biol Macromol 70:222–229

    Article  CAS  PubMed  Google Scholar 

  • Park JT, Suwanto A, Tan I et al (2014) Molecular cloning and characterization of a thermostable α-amylase exhibiting an unusually high activity. Food Sci Biotechnol 23:125–132

    Article  CAS  Google Scholar 

  • Park KM, Jun SY, Choi KH et al (2010) Characterization of an exo-acting intracellular α-amylase from the hyperthermophilic bacterium Thermotoga neapolitana. Appl Microbiol Biotechnol 86:555–566

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Huang Z, Liu Z (2014) A novel cold-active and salt-tolerant alpha-amylase from marine bacterium Zunongwangia profunda: Molecular cloning, heterologous expression and biochemical characterization. Extremophiles 18:271–281

    Article  CAS  PubMed  Google Scholar 

  • Roy JK, Mukherjee AK (2013) Applications of a high maltose forming, thermo-stable α-amylase from an extremely alkalophilic Bacillus licheniformis strain AS08E in food and laundry detergent industries. Biochem Eng J 77:220–230

    Article  CAS  Google Scholar 

  • Shafiei M, Ziaee AA, Amoozegar MA (2010) Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting, and halophilic α-amylase from a moderately halophilic bacterium, Nesterenkonia sp. strain F. Process Biochem 45:694–699

    Article  CAS  Google Scholar 

  • Sharma A, Satyanarayana T (2013) Characteristics of a high maltose-forming, acid-stable, and Ca2+-independent α-amylase of the acidophilic Bacillus acidicola. Appl Biochem Biotechnol 171:2053–2064

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Khan FG, Qazi GN (2010) Molecular cloning and characterization of amylase from soil metagenomic library derived from Northwestern Himalayas. Appl Microbiol Biotechnol 86:1821–1828

    Article  CAS  PubMed  Google Scholar 

  • Souza PM, Oliveira Magalhães P (2010) Application of microbial α-amylase in industry—a review. Braz J Microbiol 41:850–861

    Article  PubMed  PubMed Central  Google Scholar 

  • Srimathi S, Jayaraman G, Feller G et al (2007) Intrinsic halotolerance of the psychrophilic alpha-amylase from Pseudoalteromonas haloplanktis. Extremophiles 11:505–515

    Article  CAS  PubMed  Google Scholar 

  • Suganthi C, Mageswari A, Karthikeyan S et al (2015) Insight on biochemical characteristics of thermotolerant amylase isolated from extremophile bacteria Bacillus vallismortis TD6 (HQ992818). Microbiology 84:210–218

    Article  CAS  Google Scholar 

  • Wang P, Wang P, Tian J et al (2016) A new strategy to express the extracellular α-amylase from Pyrococcus furiosus in Bacillus amyloliquefaciens. Sci Rep 6. doi:10.1038/srep22229

  • Yang H, Liu L, Li J et al (2011) Heterologous expression, biochemical characterization, and overproduction of alkaline αa-amylase from Bacillus alcalophilus in Bacillus subtilis. Microb Cell Fact 10:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Kambourova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kambourova, M. (2017). Recent Advances in Extremophilic α-Amylases. In: Sani, R., Krishnaraj, R. (eds) Extremophilic Enzymatic Processing of Lignocellulosic Feedstocks to Bioenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-54684-1_7

Download citation

Publish with us

Policies and ethics