Skip to main content
Log in

Green large-scale production of N/O-dual doping hard carbon derived from bagasse as high-performance anodes for sodium-ion batteries

绿色大规模制备甘蔗渣衍生的 N/O 双掺杂硬碳用作高性能钠离子电池负极

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Sodium-ion batteries are considered as a promising candidate for lithium-ion batteries due to abundant sodium resources and similar intercalation chemistry. Hard carbon derived from biomass with the virtue of abundance and renewability is a cost-effective anode material. Herein, hard carbon is derived from renewable bagasse through a simple two-step method combining mechanical ball milling with carbonization. The hard carbon electrodes exhibit superior electrochemical performance with a high reversible capacity of 315 mA-h/g. Furthermore, the initial capacity of the full cell, HC//NaMn0.4Ni0.4Ti0.1Mg0.1O2, is 253 mA·h/g and its capacity retention rate is 77% after 80 cycles, which further verifies its practical application. The simple and low-cost preparation process, as well as excellent electrochemical properties, demonstrates that hard carbon derived from bagasse is a promising anode for sodium-ion batteries.

摘要

得益于丰富的钠资源和类似的插层化学性质, 钠离子电池被认为是一种很有前途的锂离子电池替代者. 生物质硬碳具有来源丰富、 可再生的优点, 是一种高性价比的阳极材料. 本文采用简单两步法, 机械球磨和炭化, 将可再生甘蔗渣制备成硬碳材料. 这种硬碳电极具有较高的可逆容量(315 mA∙h/g), 表现出优秀的电化学性能. 此外, 在全电池HC//NaMn0.4Ni0.4Ti0.1Mg0.1O2 中的初始容量达 253 mA∙h/g, 80 次循环后容量仍有77%, 进一步验证了其实际应用价值. 简单、 低成本的制备工艺以及优异的电化学性能表明, 甘蔗渣硬碳是一种很有前途的钠离子电池负极材料.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHENG Xin-bing, ZHANG Rui, ZHAO Chen-zi, ZHANG Qiang. Toward safe lithium metal anode in rechargeable batteries: A review [J]. Chemical Reviews, 2017, 117(15): 10403–10473. DOI: https://doi.org/10.1021/acs.chemrev.7b00115.

    Article  Google Scholar 

  2. LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage [J]. Nature Chemistry, 2015, 7(1): 19–29. DOI: https://doi.org/10.1038/nchem.2085.

    Article  Google Scholar 

  3. TANG Jia-liang, ETACHERI V, POL V G. Wild fungus derived carbon fibers and hybrids as anodes for lithium-ion batteries [J]. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2624–2631. DOI: https://doi.org/10.1021/acssuschemeng.6b00114.

    Article  Google Scholar 

  4. NAYAK P K, YANG L T, BREHM W, ADELHELM P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises [J]. Angewandte Chemie-International Edition, 2018, 57(1): 102–120. DOI: https://doi.org/10.1002/anie.201703772.

    Article  Google Scholar 

  5. ALVIN S, YOON D, CHANDRA C, CAHYADI H S, PARK J, CHANG W, CHUNG K Y, KIM J. Revealing sodium ion storage mechanism in hard carbon [J]. Carbon, 2019, 145: 67–81. DOI: https://doi.org/10.1016/j.carbon.2018.12.112.

    Article  Google Scholar 

  6. WU Fei-xiang, ZHAO Cheng-long, CHEN Shuang-qiang, LU Ya-xiang, HOU Yang-long, HU Yong-Sheng, MAIER J, YU Yan. Multi-electron reaction materials for sodium-based batteries [J]. Materials Today, 2018, 21(9): 960–973. DOI: https://doi.org/10.1016/j.mattod.2018.03.004.

    Article  Google Scholar 

  7. RADIN M D, THOMAS J C, VAN D V A. Order-disorder versus displacive transitions in Jahn-Teller active layered materials [J]. Physical Review Materials, 2020, 4(4): 043601. DOI: https://doi.org/10.1103/PhysRevMaterials.4.043601.

    Article  Google Scholar 

  8. PAHARI D, PURAVANKARA S. On controlling the P2-O2 phase transition by optimal Ti-substitution on Ni-site in P2-type Na0.67Ni0.33Mn0.67O2 (NNMO) cathode for Na-ion batteries [J]. Journal of Power Sources, 2020, 455: 227957. DOI: https://doi.org/10.1016/j.jpowsour.2020.227957.

    Article  Google Scholar 

  9. WANG Jing-yang, WANG Yan, SEO D H, SHI Tan, CHEN Shou-ping, TIAN Yao-sen, KIM H, CEDER G. A high-energy NASICON-type cathode material for Na-ion batteries [J]. Advanced Energy Materials, 2020, 10(10): 1903968. DOI: https://doi.org/10.1002/Aenm.201903968.

    Article  Google Scholar 

  10. WANG Fu-xiang, LIU Shan-shan, JIANG Qi-ke, FENG Kai, YANG Xin, LI Xing-cun, ZHANG Hong-zhang, XIA Ming-jun, ZHANG Hua-min. K2Fe3(SO4)3(OH)2(H2O)2: A new high-performance hydroxysulfate cathode material for alkali metal ion batteries [J]. Journal of Power Sources, 2020, 452: 227835. DOI: https://doi.org/10.1016/j.jpowsour.2020.227835.

    Article  Google Scholar 

  11. ZHOU Ai-jun, CHENG Wei-jie, WANG Wei, ZHAO Qiang, XIE Jian, ZHANG Wu-xing, GAO Hong-cai, XUE Lei-gang, LI Jing-ze. Hexacyanoferrate-type prussian blue analogs: Principles and advances toward high-performance sodium and potassium ion batteries [J]. Advanced Energy Materials, 2020, 11(2): 202000943. DOI: https://doi.org/10.1002/Aenm.202000943.

    Google Scholar 

  12. LIU Qian-nan, HU Zhe, CHEN Ming-zhe, ZOU Chao, JIN Hui-le, WANG Shun, CHOU Shu-lei, LIU Yong, DOU Shi-xue. The cathode choice for commercialization of sodium-ion batteries: Layered transition metal oxides versus prussian blue analogs [J]. Advanced Functional Materials, 2020, 30(14): 201909530. DOI: https://doi.org/10.1002/Adfm.201909530.

    Google Scholar 

  13. PFEIFER K, ARNOLD S, BUDAK O, LUO Xian-lin, PRESSER V, EHRENBERG H, DSOKE S. Choosing the right carbon additive is of vital importance for high-performance Sb-based Na-ion batteries [J]. Journal of Materials Chemistry A, 2020, 8(12): 6092–6104. DOI: https://doi.org/10.1039/d0ta00254b.

    Article  Google Scholar 

  14. LI Hai-xia, WANG Ji-wei, JIAO Li-fang, TAO Zhan-liang, LIANG Jing. Spherical nano-SnSb/C composite as a high-performance anode material for sodium ion batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1904017. DOI: https://doi.org/10.3866/Pku.Whxb201904017.

    Google Scholar 

  15. CHAI Yu-jun, DU Yong-heng, LI Ling, WANG Ning. Dual metal oxides interconnected by carbon nanotubes for high-capacity Li- and Na-ion batteries [J]. Nanotechnology, 2020, 31(21): 215402. DOI: https://doi.org/10.1088/1361-6528/ab7049.

    Article  Google Scholar 

  16. SHE Liao-na, ZHANG Feng, JIA Cong-ying, KANG Li-ping, LI Qi, HE Xue-xia, SUN Jie, LEI Zhi-bin, LIU Zong-huai. Electrospun Nb22O5 nanorods/microporous multichannel carbon nanofiber film anode for Na+ ion capacitors with good performance [J]. J Colloid Interface Sci, 2020, 573: 1–10. DOI: https://doi.org/10.1016/j.jcis.2020.03.122.

    Article  Google Scholar 

  17. XIAO Bi-wei, ROJO T, LI Xiao-lin. Hard carbon as sodium-ion battery anodes: Progress and challenges [J]. Chem Sus Chem, 2019, 12(1): 133–144. DOI: https://doi.org/10.1002/cssc.201801879.

    Article  Google Scholar 

  18. WU Feng, ZHANG Ming-hao, BAI Ying, WANG Xin-ran, DONG Rui-qi, WU Chuan. Lotus seedpod-derived hard carbon with hierarchical porous structure as stable anode for sodium-ion batteries [J]. ACS Applied Materials & Interfaces, 2019, 11(13): 12554–12561. DOI: https://doi.org/10.1021/acsami.9b01419.

    Article  Google Scholar 

  19. YANG Hai, CHEN Lin-wei, HE Fu-xiang, ZHANG Jia-qing, FENG Yue-zhan, ZHAO Lu-kang, WANG Bin, HE Li-xin, ZHANG Qiao-bao, YU Yan. Optimizing the void size of yolk-shell Bi@Void@C nanospheres for high-power-density sodium-ion batteries [J]. Nano Letters, 2020, 20(1): 758–767. DOI: https://doi.org/10.1021/acs.nanolett.9b04829.

    Article  Google Scholar 

  20. LI Yu-zhu, WANG Huan-wen, WANG Li-bin, MAO Zhi-fei, WANG Rui, HE Bei-bei, GONG Yan-sheng, HU Xian-luo. Mesopore-induced ultrafast Na+-storage in T-Nb2O5/carbon nanofiber films toward flexible high-power Na-ion capacitors [J]. Small, 2019, 15(9): 1804539. DOI: https://doi.org/10.1002/smll.201804539.

    Article  Google Scholar 

  21. LIU Yuan-yue, MERINOV B V, GODDARD W A III. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(14): 3735–3739. DOI: https://doi.org/10.1073/pnas.1602473113.

    Article  Google Scholar 

  22. ZHU You-yu, CHEN Ming-ming, LI Qi, YUAN Chao, WANG Cheng-yang. A porous biomass-derived anode for high-performance sodium-ion batteries [J]. Carbon, 2018, 129: 695–701.

    Article  Google Scholar 

  23. LIU Ting, LI Xi-fei. Biomass-derived nanostructured porous carbons for sodium ion batteries: A review [J]. Materials Technology, 2018, 34(4): 232–245. DOI: https://doi.org/10.1016/j.carbon.2017.12.103.

    Article  Google Scholar 

  24. HAO Jian, WANG Yan-xia, CHI Cai-xia, WANG Jing, GUO Qing-jie, YANG Yu, LI Yao, LIU Xiao-xu, ZHAO Jiu-peng. Enhanced storage capability by biomass-derived porous carbon for lithium-ion and sodium-ion battery anodes [J]. Sustainable Energy & Fuels, 2018, 2(10): 2358–2365. DOI: https://doi.org/10.1039/c8se00353j.

    Article  Google Scholar 

  25. DING Jia, WANG Huan-lei, LI Zhi, KOHANDEHGHAN A, CUI Kai, XU Zhan-wei, ZAHIRI B, TAN Xue-hai, LOTFABAD E M, OLSEN B C, MITLIN D. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes [J]. ACS Nano, 2013, 7(12): 11004–11015. DOI: https://doi.org/10.1021/nn404640c.

    Article  Google Scholar 

  26. LI Yun-ming, HU Yong-sheng, TITIRICI M M, CHEN Li-quan, HUANG Xue-jie. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries [J]. Advanced Energy Materials, 2016, 6(18): 1600659. DOI: https://doi.org/10.1002/aenm.201600659.

    Article  Google Scholar 

  27. LOTFABAD E M, DING J, CUI K, KOHANDEHGHAN A, KALISVAART W P, HAZELTON M, MITLIN D. High-density sodium and lithium ion battery anodes from banana peels [J]. ACS Nano, 2014, 8(7): 7115–7129. DOI: https://doi.org/10.1021/nn502045y.

    Article  Google Scholar 

  28. WANG Peng-zi, ZHU Xiao-shu, WANG Qiao-qiao, XU Xin, ZHOU Xiao-si, BAO Jian-chun. Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries [J]. Journal of Materials Chemistry A, 2017, 5(12): 5761–5769. DOI: https://doi.org/10.1039/c7ta00639j.

    Article  Google Scholar 

  29. LI Rui-zi, HUANG Jian-feng, LI Jia-yin, CAO Li-yun, ZHONG Xin-zi, YU Ai-min, LU Guo-xing. Nitrogen-doped porous hard carbons derived from shaddock peel for high-capacity lithium-ion battery anodes [J]. Journal of Electroanalytical Chemistry, 2020, 862: 114044. DOI: https://doi.org/10.1016/j.jelechem.2020.114044.

    Article  Google Scholar 

  30. BENITEZ A, MORALES J, CABALLERO A. Pistachio shell-derived carbon activated with phosphoric acid: A more efficient procedure to improve the performance of Li-S batteries [J]. Nanomaterials (Basel), 2020, 10(5): 840. DOI: https://doi.org/10.3390/nano10050840.

    Article  Google Scholar 

  31. XUE Ming-zhe, CHEN Chen, TAN Yan, REN Zhi-wei, LI Bing, ZHANG Cun-man. Mangosteen peel-derived porous carbon: Synthesis and its application in the sulfur cathode for lithium sulfur battery [J]. Journal of Materials Science, 2018, 53(15): 11062–11077. DOI: https://doi.org/10.1007/s10853-018-2370-9.

    Article  Google Scholar 

  32. LUAN Rui-ying, XU Da, PAN Hui, ZHU Cheng-ling, WANG Da-wei, MENG Xin, LI Yao, IMTIAZ M, ZHU Shen-min, MA Jun. High electrochemical cycling performance through accurately inheriting hierarchical porous structure from bagasse [J]. Journal of Energy Storage, 2019, 22: 60–67. DOI: https://doi.org/10.1016/j.est.2019.01.021.

    Article  Google Scholar 

  33. LI Yu-zhu, WANG Huan-wen, HUANG Bao-jun, WANG Li-bin, WANG Rui, HE Bei-bei, GONG Yan-sheng, HU Xian-luo. Mo2C-induced solid-phase synthesis of ultrathin MoS2 nanosheet arrays on bagasse-derived porous carbon frameworks for high-energy hybrid sodium-ion capacitors [J]. Journal of Materials Chemistry A, 2018, 6(30): 14742–14751. DOI: https://doi.org/10.1039/c8ta04597f.

    Article  Google Scholar 

  34. WANG Jin, ZHOU Zhao-fu, LI Yu-shan, LI Meng, WANG Feng, YAO Qing-rong, WANG Zhong-min, ZHOU Huai-ying, DENG Jian-qiu. High-rate performance O3-NaNi0.4Mn0.4Cu0.1Ti0.1O2 as a cathode for sodium ion batteries [J]. Journal of Alloys and Compounds, 2019, 792: 1054–1060. DOI: https://doi.org/10.1016/j.jallcom.2019.04.053.

    Article  Google Scholar 

  35. DU Lei-lei, WU Wei, LUO Chao, XU Dong-wei, GUO Han-yu, WANG Ruo, ZHANG Tian, WANG Jun, DENG Yong-hong. Lignin-derived nitrogen-doped porous carbon as a high-rate anode material for sodium ion batteries [J]. Journal of the Electrochemical Society, 2019, 166(2): A423–A428. DOI: https://doi.org/10.1149/2.1361902jes.

    Article  Google Scholar 

  36. ZENG Guang, ZHOU Bao-long, YI Luo-cai, LI Hao, HU Xiang, LI Yan. Green and facile fabrication of hierarchical N-doped porous carbon from water hyacinths for high performance lithium/sodium ion batteries [J]. Sustainable Energy & Fuels, 2018, 2(4): 855–861. DOI: https://doi.org/10.1039/c7se00517b.

    Article  Google Scholar 

  37. ZHANG Yan-jia, LI Xue, DONG Peng, WU Gang, XIAO Jie, ZENG Xiao-yuan, ZHANG Ying-jie, SUN Xue-liang. Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion batteries [J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42796–42803. DOI: https://doi.org/10.1021/acsami.8b13160.

    Article  Google Scholar 

  38. WANG Jing, YAN Lei, REN Qing-juan, FAN Lin-lin, ZHANG Fu-ming, SHI Zhi-qiang. Facile hydrothermal treatment route of reed straw-derived hard carbon for high performance sodium ion battery [J]. Electrochimica Acta, 2018, 291: 188–196. DOI: https://doi.org/10.1016/j.electacta.2018.08.136.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The initial ideas and goals were developed by DENG Jian-qiu, ZHOU Huai-ying and ZOU Yong-jin. WANG Jin and LI Yu-shan conducted experimental tests. LIU Peng, WANG Feng and YAO Qing-rong analyzed the experimental data. YAO Qing-rong, ZOU Yong-jin and ZHOU Huai-ying revised the figures and provided theoretical guidance. LIU Peng, DENG Jian-qiu, and BALOGUN M.-Sadeeq wrote, revised, and polished the manuscript. All authors replied to reviewers’ comments and revised the final version.

Corresponding authors

Correspondence to Peng Liu  (刘鹏), M.-Sadeeq Balogun or Jian-qiu Deng  (邓健秋).

Ethics declarations

WANG Jin, LI Yu-shan, LIU Peng, WANG Feng, YAO Qing-rong, ZOU Yong-jin, ZHOU Huai-ying, BALOGUN M.-Sadeeq and DENG Jian-qiu declare that they have no conflict of interest.

Additional information

Foundation item: Projects(51661009, 51761007) supported by the National Natural Science Foundation of China; Projects (2019GXNSFDA245014, 2016GXNSFGA380001) supported by the Natural Science Foundation of Guangxi Province, China; Projects(2019AC20164, 2019AC20053) supported by the Science and Technology Base and Talent Special Project of Guangxi Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, Ys., Liu, P. et al. Green large-scale production of N/O-dual doping hard carbon derived from bagasse as high-performance anodes for sodium-ion batteries. J. Cent. South Univ. 28, 361–369 (2021). https://doi.org/10.1007/s11771-021-4608-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4608-y

Key words

关键词

Navigation