Skip to main content
Log in

Boosting ammonia production in electrocatalytic NOx reduction on a robust Fe/FeMoO4 catalyst

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrocatalytic reduction of nitrate \(({\rm{N}}{{\rm{O}}_3}^ - )\) and nitride \(({\rm{N}}{{\rm{O}}_2}^ - )\) to ammonia (NH3) is of wide interest as a promising alternative to the energy-intensive Haber-Bosch route for mitigating the vast energy consumption and the accompanied carbon dioxide emission, as well as benefiting for the relevant sewage treatment. However, exploring an efficient and low-cost catalyst with high atomic utilization that can effectively facilitate the slow multi-electron transfer process remains a grand challenge. Herein, we present an efficient hydrogenation of \({\rm{N}}{{\rm{O}}_3}^ - /{\rm{N}}{{\rm{O}}_2}^ - \) species to NH3 in both alkaline and neutral environments over the Fe2(MoO4)3 derived hybrid electrocatalyst with the metallic Fe site on FeMoO4 (Fe/FeMoO4). The Mo ingredient can play a synergistically positive role in further promoting the NH3 production on Fe. As a result, Fe/FeMoO4 behaves well in the electrochemical NH3 generation from \({\rm{N}}{{\rm{O}}_2}^ - \) with a maximum NH3 Faradaic efficiency (FE) of 96.53% and 87.68% in alkaline and neutral electrolyte, corresponding to the NH3 yield rate of 640.68 and 302.56 \({\rm{mg}} \cdot {{\rm{h}}^{ - 1}} \cdot {\rm{m}}{{\rm{g}}_{{\rm{cat}}.}}^{ - 1}\), respectively, which outperforms the Fe and Mo counterpart and other similar catalyst, showing the robust catalytic capacity of each active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng, J. Y.; Jiang, L.; Lyu, Y. H.; Jiang, S. P.; Wang, S. Y. Green synthesis of nitrogen-to-ammonia fixation: Past, present, and future. Energy Environ. Mater. 2022, 5, 452–457.

    Article  CAS  Google Scholar 

  2. Li, J. C.; Li, M.; An, N.; Zhang, S.; Song, Q. A.; Yang, Y. L.; Li, J.; Liu, X. Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies. Proc. Natl. Acad. Sci. USA 2022, 119, e2123450119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fan, K.; Xie, W. F.; Li, J. Z.; Sun, Y. N.; Xu, P. C.; Tang, Y.; Li, Z. H.; Shao, M. F. Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat. Commun. 2022, 13, 7958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun, B. T.; Lu, S. C.; Qian, Y. Y.; Zhang, X. L.; Tian, J. Recent progress in research and design concepts for the characterization, testing, and photocatalysts for nitrogen reduction reaction. Carbon Energy 2023, 5, e305.

    Article  CAS  Google Scholar 

  5. Zhang, X. X.; Cao, Y. H.; Huang, Z. F.; Zhang, S. S.; Liu, C. G.; Pan, L.; Shi, C. X.; Zhang, X. W.; Zhou, Y.; Yang, G. D. et al. Regulating the interfacial charge transfer and constructing symmetry-breaking sites for the enhanced N2 electroreduction activity. Carbon Energy 2023, 5, e266.

    Article  CAS  Google Scholar 

  6. Chen, K.; Shen, P.; Zhang, N. N.; Ma, D. W.; Chu, K. Electrocatalytic NO reduction to NH3 on Mo2C nanosheets. Inorg. Chem. 2023, 62, 653–658.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, L. C.; Liang, J.; Wang, Y. Y.; Mou, T.; Lin, Y. T.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Li, N. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263–25268.

    Article  CAS  Google Scholar 

  8. Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350–5354.

    Article  CAS  Google Scholar 

  9. Fang, J. Y.; Zheng, Q. Z.; Lou, Y. Y.; Zhao, K. M.; Hu, S. N.; Li, G.; Akdim, O.; Huang, X. Y.; Sun, S. G. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 2022, 13, 7899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He, W. H.; Zhang, J.; Dieckhöfer, S.; Varhade, S.; Brix, A. C.; Lielpetere, A.; Seisel, S.; Junqueira, J. R. C.; Schuhmann, W. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 2022, 13, 1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun, W. J.; Ji, H. Q.; Li, L. X.; Zhang, H. Y.; Wang, Z. K.; He, J. H.; Lu, J. M. Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra-low concentration and electroreduction to ammonia. Angew. Chem., Int. Ed. 2021, 60, 22933–22939.

    Article  CAS  Google Scholar 

  12. Zhang, S. B.; Han, M. M.; Shi, T. F.; Zhang, H. M.; Lin, Y.; Zheng, X. S.; Zheng, L. R.; Zhou, H. J.; Chen, C.; Zhang, Y. X. et al. Atomically dispersed bimetallic Fe-Co electrocatalysts for green production of ammonia. Nat. Sustain. 2023, 6, 169–179.

    Article  Google Scholar 

  13. Li, P. P.; Jin, Z. Y.; Fang, Z. W.; Yu, G. H. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2021, 14, 3522–3531.

    Article  CAS  Google Scholar 

  14. Zhang, G. K.; Li, X. T.; Chen, K.; Guo, Y. L.; Ma, D. W.; Chu, K. Tandem electrocatalytic nitrate reduction to ammonia on MBenes. Angew. Chem., Int. Ed. 2023, 62, e202300054.

    Article  CAS  Google Scholar 

  15. Luo, H. X.; Li, S. J.; Wu, Z. Y.; Liu, Y. B.; Luo, W.; Li, W.; Zhang, D. Q.; Chen, J.; Yang, J. P. Modulating the active hydrogen adsorption on Fe-N interface for boosted electrocatalytic nitrate reduction with ultra-long stability. Adv. Mater. 2023, 35, 202304695.

    Article  Google Scholar 

  16. Zhang, F. Z.; Luo, J. M.; Chen, J. L.; Luo, H. X.; Jiang, M. M.; Yang, C. X.; Zhang, H.; Chen, J.; Dong, A. G.; Yang, J. P. Interfacial assembly of nanocrystals on nanofibers with strong interaction for electrocatalytic nitrate reduction. Angew. Chem., Int. Ed. 2023, 62, e202310383.

    Article  CAS  Google Scholar 

  17. Zhang, H.; Wang, C. Q.; Luo, H. X.; Chen, J. L.; Kuang, M.; Yang, J. P. Iron nanoparticles protected by chainmail-structured graphene for durable electrocatalytic nitrate reduction to nitrogen. Angew. Chem., Int. Ed. 2022, 62, e202217071.

    Article  Google Scholar 

  18. Li, X. T.; Wang, S. Y.; Wang, G. H.; Shen, P.; Ma, D. W.; Chu, K. Mo2C for electrocatalytic nitrate reduction to ammonia. Dalton Trans. 2022, 51, 17547–17552.

    Article  CAS  PubMed  Google Scholar 

  19. Li, J.; Zhang, Y.; Liu, C.; Zheng, L. R.; Petit, E.; Qi, K.; Zhang, Y.; Wu, H. L.; Wang, W. S.; Tiberj, A. et al. 3.4% solar-to-ammonia efficiency from nitrate using fe single atomic catalyst supported on MoS2 nanosheets. Adv. Funct. Mater. 2022, 32, 2108316.

    Article  CAS  Google Scholar 

  20. Abbott, D. F.; Xu, Y. Z.; Kuznetsov, D. A.; Kumar, P.; Müller, C. R.; Fedorov, A.; Mougel, V. Understanding the synergy between Fe and Mo sites in the nitrate reduction reaction on a bio-inspired bimetallic MXene electrocatalyst. Angew. Chem., Int. Ed. 2023, 62, e202313746.

    Article  CAS  Google Scholar 

  21. Stoyanova, A.; Iordanova, R.; Mancheva, M.; Dimitriev, Y. Synthesis and structural characterization of MoO3 phases obtained from molybdic acid by addition of HNO3 and H2O2. J. Optoelectron. Adv. Mater. 2009, 11, 1127–1131.

    CAS  Google Scholar 

  22. Jin, G. J.; Weng, W. H.; Lin, Z. J.; Dummer, N. F.; Taylor, S. H.; Kiely, C. J.; Bartley, J. K.; Hutchings, G. J. Fe2(MoO4)3/MoO3 nanostructured catalysts for the oxidation of methanol to formaldehyde. J. Catal. 2012, 296, 55–64.

    Article  CAS  Google Scholar 

  23. Han, D. D.; Xu, S. C.; Or, S. W.; Ho, S. L.; Liu, B. The one-pot syntheses of Fe@(C, N) nanocapsules for electromagnetic absorption at gigahertz. Mater. Lett. 2017, 198, 69–72.

    Article  CAS  Google Scholar 

  24. Lin, L.; Zhu, Q.; Xu, A. W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 2014, 136, 11027–11033.

    Article  CAS  PubMed  Google Scholar 

  25. Yao, J. X.; Zhou, Y. T.; Yan, J. M.; Jiang, Q. Regulating Fe2(MoO4)3 by Au nanoparticles for efficient N2 electroreduction under ambient conditions. Adv. Energy Mater. 2021, 11, 2003701.

    Article  CAS  Google Scholar 

  26. Bai, S. L.; Chen, S.; Chen, L. Y.; Zhang, K. W.; Luo, R. X.; Li, D. Q.; Liu, C. C. Ultrasonic synthesis of MoO3 nanorods and their gas sensing properties. Sens. Actuators B Chem. 2012, 174, 51–58.

    Article  CAS  Google Scholar 

  27. Liu, D. X.; Meng, Z.; Zhu, Y. F.; Sun, X. F.; Deng, X.; Shi, M. M.; Hao, Q.; Kang, X.; Dai, T. Y.; Zhong, H. X. et al. Gram-level NH3 electrosynthesis via NOx reduction on a Cu activated Co electrode. Angew. Chem., Int. Ed. 2024, 63, e202315238.

    Article  CAS  Google Scholar 

  28. Ataka, K. I.; Yotsuyanagi, T.; Osawa, M. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. 1996, 100, 10664–10672.

    Article  CAS  Google Scholar 

  29. Zhou, N.; Wang, Z.; Zhang, N.; Bao, D.; Zhong, H. X.; Zhang, X. B. Potential-induced synthesis and structural identification of oxide-derived Cu electrocatalysts for selective nitrate reduction to ammonia. ACS Catal. 2023, 13, 7529–7537.

    Article  CAS  Google Scholar 

  30. Chen, K.; Ma, Z. Y.; Li, X. C.; Kang, J. L.; Ma, D. W.; Chu, K. Single-atom Bi alloyed pd metallene for nitrate electroreduction to ammonia. Adv. Funct. Mater. 2023, 33, 202209890.

    Google Scholar 

  31. Hao, R.; Tian, L.; Wang, C.; Wang, L.; Liu, Y. P.; Wang, G. C.; Li, W.; Ozin, G. A. Pollution to solution: A universal electrocatalyst for reduction of all NOx-based species to NH3. Chem Catal. 2022, 2, 622–638.

    Article  CAS  Google Scholar 

  32. Zhou, J.; Wen, M.; Huang, R.; Wu, Q. S.; Luo, Y. X.; Tian, Y. K.; Wei, G. F.; Fu, Y. Q. Regulating active hydrogen adsorbed on grain boundary defects of nano-nickel for boosting ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2023, 16, 2611–2620.

    Article  CAS  Google Scholar 

  33. Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (Nos. 51925102 and 52273277). H.-X. Z. acknowledges funding from the National Natural Science Foundation of China Outstanding Youth Science Foundation of China (Overseas).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Xia Zhong or Jun-Min Yan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, DX., Deng, X., Zhu, YF. et al. Boosting ammonia production in electrocatalytic NOx reduction on a robust Fe/FeMoO4 catalyst. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6661-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6661-y

Keywords

Navigation