Skip to main content
Log in

MOF-templated tubular Ni1-xCoxS2-CdS heterojunction with intensified direct Z-scheme charge transmission for highly promoted visible-light photocatalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hollow semiconductor nanostructures with direct Z-scheme heterojunction have significant advantages for photocatalytic reactions, and optimizing the interfacial charge transmission of Z-scheme heterojunction is the hinge to achieve excellent solar conversion efficiency. In this work, tubular Ni1-xCoxS2-CdS heterostructures with reinforced Z-scheme charge transmission were constructed through an In-metal-organic framework (MOF) templated strategy. The Z-scheme charge transfer mechanism was sufficiently confirmed by combining density functional theory (DFT) calculation, X-ray photoelectron spectroscopy (XPS), surface photovoltage spectroscopy (SPV), and radical testing results. Crucially, the use of sodium citrate complexant contributes to the formation of intimate heterointerface, and the Fermi level gap between CdS and NiS2 is enlarged through Co doping into NiS2, which enhances the built-in electric field and photo-carriers transmission driving force for Ni1-xCoxS2-CdS heterojunction, resulting in an evidently promoted activity toward H2 evolution reaction (HER). Under visible-light (λ > 400 nm) irradiation, the Ni1-xCoxS2-CdS composite with 10 mol% Co doping and 80 wt.% CdS (NC0.10S-80% CdS) achieved an outstanding HER rate up to 35.94 mmol·g-1·h-1 (corresponding to the apparent quantum efficiency of 34.7% at 420 nm), approximately 76.4 times that of 3 wt.% Pt-loaded CdS and it is much superior to that of most CdS-based photocatalysts ever reported. Moreover, the good photocatalytic durability of Ni1-xCoxS2-CdS heterostructures was validated by cycling and long-term HER tests. This work could inspire the development of high-performance Z-scheme heterojunction via optimizing the morphology and interfacial charge transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tao, X. P.; Zhao, Y., Wang, S. Y., Li, C., Li, R. G. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem. Soc. Rev. 2022, 51, 3561–3608.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou, P., Navid, I. A., Ma, Y. J., Xiao, Y. X., Wang, P., Ye, Z. W., Zhou, B. W., Sun, K., Mi, Z. T. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 2023, 613, 66–70.

    Article  CAS  PubMed  Google Scholar 

  3. Wang, H. Q. Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022, 15, 2834–2854.

    Article  CAS  Google Scholar 

  4. Sun, C. Y., Li, W., Wang, H. Q. Cascade electrolysis and thermocatalysis: A reliable system for upgrading C1 to C4 hydrocarbons. Rare Met. 2024, 43, 410–412.

    Article  CAS  Google Scholar 

  5. Yang, D. R., Wang, X. 2D π-conjugated metal-organic frameworks for CO2 electroreduction. SmartMat 2022, 3, 54–67.

    Article  CAS  Google Scholar 

  6. Sun, C. Y.; Li, W., Wang, K., Zhou, W. J., Wang, H. Q. Polyoxometalates-derived nanostructures for electrocatalysis application. Rare Met. 2024, 43, 1845–1866.

    Article  CAS  Google Scholar 

  7. Wei, Y. Z., Wang, J. Y., Yu, R. B., Wan, J. W., Wang, D. Constructing SrTiO3-TiO2 heterogeneous hollow multi-shelled structures for enhanced solar water splitting. Angew. Chem., Int. Ed. 2019, 58, 1422–1426.

    Article  CAS  Google Scholar 

  8. Xiao, M., Luo, B., Lyu, M. Q., Wang, S. C., Wang, L. Z. Single-crystalline nanomesh tantalum nitride photocatalyst with improved hydrogen-evolving performance. Adv. Energy Mater. 2018, 8, 1701605.

    Article  Google Scholar 

  9. Zhang, G. X., Guan, Z. J., Yang, J. J., Li, Q. Y., Zhou, Y., Zou, Z. G. Metal sulfides for photocatalytic hydrogen production: Current development and future challenges. Solar RRL 2022, 6, 2200587.

    Article  CAS  Google Scholar 

  10. Jaryal, R., Kumar, R., Khullar, S. Mixed metal-metal organic frameworks (MM-MOFs) and their use as efficient photocatalysts for hydrogen evolution from water splitting reactions. Coordin. Chem. Rev. 2022, 464, 214542.

    Article  CAS  Google Scholar 

  11. Dai, C. H., Liu, B. Conjugated polymers for visible-light-driven photocatalysis. Energy Environ. Sci. 2020, 13, 24–52.

    Article  CAS  Google Scholar 

  12. Zhang, G. P., Chen, D. Y., Li, N. J., Xu, Q. F., Li, H., He, J. H., Lu, J. M. Construction of hierarchical hollow Co9S8/ZnIn2S4 tubular heterostructures for highly efficient solar energy conversion and environmental remediation. Angew. Chem., Int. Ed. 2020, 59, 8255–8261.

    Article  CAS  Google Scholar 

  13. Zhu, Q. H., Xu, Q., Du, M. M., Zeng, X. F., Zhong, G. F., Qiu, B. C., Zhang, J. L. Recent progress of metal sulfide photocatalysts for solar energy conversion. Adv. Mater. 2022, 34, 2202929.

    Article  CAS  Google Scholar 

  14. Xiao, M., Wang, Z. L., Lyu, M. Q., Luo, B., Wang, S. C., Liu, G., Cheng, H. M., Wang, L. Z. Hollow nanostructures for photocatalysis: Advantages and challenges. Adv. Mater. 2019, 31, 1801369.

    Article  Google Scholar 

  15. Wang, S. B., Guan, B. Y., Wang, X., Lou, X. W. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 15145–15148.

    Article  CAS  PubMed  Google Scholar 

  16. Wei, Y. Z., Yang, N. L., Huang, K. K., Wan, J. W., You, F. F., Yu, R. B., Feng, S. H., Wang, D. Steering hollow multishelled structures in photocatalysis: Optimizing surface and mass transport. Adv. Mater. 2020, 32, 2002556.

    Article  CAS  Google Scholar 

  17. Zhang, N., Xing, Z. P., Li, Z. Z., Zhou, W. Sulfur vacancy engineering of metal sulfide photocatalysts for solar energy conversion. Chem. Catal. 2023, 3, 100375.

    Article  CAS  Google Scholar 

  18. Low, J., Yu, J. G., Jaroniec, M., Wageh, S., Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.

    Article  Google Scholar 

  19. Zhou, P., Yu, J. G., Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920–4935.

    Article  CAS  PubMed  Google Scholar 

  20. Xu, Q. L., Zhang, L. Y., Yu, J. G., Wageh, S., Al-Ghamdi, A. A., Jaroniec, M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today 2018, 21, 1042–1063.

    Article  CAS  Google Scholar 

  21. Wang, X. H., Wang, X. H., Huang, J. F., Li, S. X., Meng, A. L., Li, Z. J. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat. Commun. 2021, 12, 4112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, S. S., Vequizo, J. J. M., Pan, Z. H., Hisatomi, T., Nakabayashi, M., Lin, L. H., Wang, Z., Kato, K., Yamakata, A., Shibata, N. et al. Surface modifications of (ZnSe)0.5(CuGa2.5Se4.25)0.5 to promote photocatalytic Z-scheme overall water splitting. J. Am. Chem. Soc. 2021, 143, 10633–10641.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, M., Lu, M., Lang, Z. L., Liu, J., Liu, M., Chang, J. N., Li, L. Y., Shang, L. J., Wang, M., Li, S. L. et al. Semiconductor/covalent-organic-framework Z-scheme heterojunctions for artificial photosynthesis. Angew. Chem., Int. Ed. 2020, 59, 6500–6506.

    Article  CAS  Google Scholar 

  24. Zhang, S. Q., Liu, X., Liu, C. B., Luo, S. L., Wang, L. L., Cai, T., Zeng, Y. X., Yuan, J. L., Dong, W. Y., Pei, Y. et al. MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: Atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 2018, 12, 751–758.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, K., Kim, J. K., Park, B., Qia, S. F., Ji, B. J., Sheng, X. W., Zeng, H. B., Shin, H., Oh, S. H., Lee, C. L. et al. Defect-induced epitaxial growth for efficient solar hydrogen production. Nano Lett. 2017, 17, 6676–6683.

    Article  CAS  PubMed  Google Scholar 

  26. Guo, Y., Shi, W. X., Zhu, Y. F. Internal electric field engineering for steering photogenerated charge separation and enhancing photoactivity. Ecomat 2019, 1, e12007.

    Article  Google Scholar 

  27. Huang, Z. F., Song, J. J., Wang, X., Pan, L., Li, K., Zhang, X. W., Wang, L., Zou, J. J. Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. Nano Energy 2017, 40, 308–316.

    Article  CAS  Google Scholar 

  28. Wang, X. X., Xie, J. Z., Li, S. Y., Yuan, Z., Sun, Y. F., Gao, X. Y., Tang, Z., Zhang, H. Y., Li, J. X., Wang, S. Y. et al. Enhancing interfacial electric field in WO3-C3N4 through Fermi level modulation for electrocatalytic nitrogen reduction. Appl. Catal. B: Environ. 2023, 339, 123126.

    Article  CAS  Google Scholar 

  29. Zhu, B. C., Tan, H. Y., Fan, J. J., Cheng, B., Yu, J. G., Ho, W. K. Tuning the strength of built-in electric field in 2D/2D g-C3N4/SnS2 and g-C3N4/ZrS2 S-scheme heterojunctions by nonmetal doping. J. Materiomics 2021, 7, 988–997.

    Article  Google Scholar 

  30. Sun, S. C., Gao, R. J., Liu, X. L., Pan, L., Shi, C. X., Jiang, Z., Zhang, X. W., Zou, J. J. Engineering interfacial band bending over bismuth vanadate/carbon nitride by work function regulation for efficient solar-driven water splitting. Sci. Bull. 2022, 67, 389–397.

    Article  CAS  Google Scholar 

  31. Kresse, G., Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  32. Perdew, J. P., Burke, K., Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  PubMed  Google Scholar 

  33. Volkringer, C., Meddouri, M., Loiseau, T., Guillou, N., Marrot, J., Ferey, G., Haouas, M., Taulelle, F., Audebrand, N., Latroche, M. The Kagome topology of the gallium and indium metal-organic framework types with a MIL-68 structure: Synthesis, XRD, solid-state NMR characterizations, and hydrogen adsorption. Inorg. Chem. 2008, 47, 11892–11901.

    Article  CAS  PubMed  Google Scholar 

  34. Guo, J. L., Liang, Y. H., Liu, L., Hu, J. S., Wang, H., An, W. J., Cui, W. Q. Core-shell structure of sulphur vacancies-CdS@CuS: Enhanced photocatalytic hydrogen generation activity based on photoinduced interfacial charge transfer. J. Colloid Interface Sci. 2021, 600, 138–149.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, J. F., Wang, P., Fan, J. J., Yu, H. G., Yu, J. G. Hetero-phase MoC-Mo2C nanoparticles for enhanced photocatalytic H2-production activity of TiO2. Nano Res. 2020, 14, 1095–1102.

    Article  Google Scholar 

  36. Shen, R. C., Ding, Y. N., Li, S. B., Zhang, P., Xiang, Q. J., Ng, Y. H., Li, X. Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 25–36.

    Article  CAS  Google Scholar 

  37. Chang, K., Li, M., Wang, T., Ouyang, S. X., Li, P., Liu, L. Q., Ye, J. H. Drastic layer-number-dependent activity enhancement in photocatalytic H2 evolution over nMoS2/CdS (n ≥ 1) under visible light. Adv. Energy Mater. 2015, 5, 1402279.

    Article  Google Scholar 

  38. Li, Q. H., Lu, W., Li, Z. P., Ning, J. Q., Zhong, Y. J., Hu, Y. Hierarchical MoS2/NiCo2S4@C urchin-like hollow microspheres for asymmetric supercapacitors. Chem. Eng. J. 2020, 380, 122544.

    Article  CAS  Google Scholar 

  39. Li, J. H., Wang, L. L., He, H. J., Chen, Y. Q., Gao, Z. R., Ma, N., Wang, B., Zheng, L. L., Li, R. L., Wei, Y. J. et al. Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction. Nano Res. 2022, 15, 4986–4995.

    Article  Google Scholar 

  40. Liu, Y. N., Ma, X. H., Jin, Z. L. Engineering a NiAl-LDH/CoSx S-scheme heterojunction for enhanced photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2022, 609, 686–697.

    Article  CAS  PubMed  Google Scholar 

  41. Jiang, R. Q., Mao, L., Zhao, Y. L., Zhang, J. Y., Chubenko, E. B., Bondarenko, V., Sui, Y. W., Gu, X. Q., Cai, X. Y. 1D/2D CeO2/ZnIn2S4 Z-scheme heterojunction photocatalysts for efficient H2 evolution under visible light. Sci. China Mater. 2022, 66, 139–149

    Article  Google Scholar 

  42. Wei, L., Chen, Y. J., Lin, Y. P., Wu, H. S., Yuan, R. S., Li, Z. H. MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations. Appl. Catal. B: Environ. 2014, 144, 521–527.

    Article  CAS  Google Scholar 

  43. Xing, M. Y., Qiu, B. C., Du, M. M., Zhu, Q. H., Wang, L. Z., Zhang, J. L. Spatially separated CdS shells exposed with reduction surfaces for enhancing photocatalytic hydrogen evolution. Adv. Funct. Mater. 2017, 27, 1702624.

    Article  Google Scholar 

  44. Xiong, J. H., Liu, Y. H., Wang, D. K., Liang, S. J., Wu, W. M., Wu, L. An efficient cocatalyst of defect-decorated MoS2 ultrathin nanoplates for the promotion of photocatalytic hydrogen evolution over CdS nanocrystal. J. Mater. Chem. A 2015, 3, 12631–12635.

    Article  CAS  Google Scholar 

  45. Zhu, P., Chen, Y., Zhou, Y., Yang, Z. X., Wu, D., Xiong, X., Ouyang, F. P. A metallic MoS2 nanosheet array on grapheneprotected Ni foam as a highly efficient electrocatalytic hydrogen evolution cathode. J. Mater. Chem. A 2018, 6, 16458–16464.

    Article  CAS  Google Scholar 

  46. Wang, L. B., Cheng, B., Zhang, L. Y., Yu, J. G. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 2103447

    Article  CAS  Google Scholar 

  47. Wang, H. Q., Xu, J. H., Zhang, Q. B., Hu, S. X., Zhou, W. J., Liu, H., Wang, X. Super-hybrid transition metal sulfide nanoarrays of Co3S4 nanosheet/P-doped WS2 nanosheet/Co9S8 nanoparticle with Pt-like activities for robust all-pH hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2112362.

    Article  CAS  Google Scholar 

  48. Wang, H. L., Zhang, L. S., Chen, Z. G., Hu, J. Q., Li, S. J., Wang, Z. H., Liu, J. S., Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244.

    Article  CAS  PubMed  Google Scholar 

  49. Jiang, D. C., Zhu, L., Irfan, R. M., Zhang, L., Du, P. W. Integrating noble-metal-free NiS cocatalyst with a semiconductor heterojunction composite for efficient photocatalytic H2 production in water under visible light. Chin. J. Catal. 2017, 38, 2102–2109.

    Article  CAS  Google Scholar 

  50. Wang, H. Y., Niu, R. R., Liu, J. H., Guo, S., Yang, Y. P., Liu, Z. Y., Li, J. Electrostatic self-assembly of 2D/2D CoWO4/g-C3N4 p-n heterojunction for improved photocatalytic hydrogen evolution: Built-in electric field modulated charge separation and mechanism unveiling. Nano Res. 2022, 15, 6987–6998.

    Article  CAS  Google Scholar 

  51. Cui, X. M., Ruan, Q. F., Zhuo, X. L., Xia, X. Y., Hu, J. T., Fu, R. F., Li, Y., Wang, J. F., Xu, H. X. Photothermal nanomaterials: A powerful light-to-heat converter. Chem. Rev. 2023, 123, 6891–6952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Du, C., Yang, G. W. Self-integrated effects of 2D ZnIn2S4 and amorphous Mo2C nanoparticles composite for promoting solar hydrogen generation. Nano Energy 2020, 76, 105031.

    Article  CAS  Google Scholar 

  53. Shang, L., Tong, B., Yu, H. J., Waterhouse, G. I. N., Zhou, C., Zhao, Y. F., Tahir, M., Wu, L. Z., Tung, C. H., Zhang, T. R. CdS nanoparticle-decorated Cd nanosheets for efficient visible lightdriven photocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1501241.

    Article  Google Scholar 

  54. Xiang, X. M., Chou, L. J., Li, X. H. Synthesis of PdS-CdSe@CdSAu nanorods with asymmetric tips with improved H2 production efficiency in water splitting and increased photostability. Chin. J. Catal. 2018, 39, 407–412.

    Article  CAS  Google Scholar 

  55. Tao, J. N., Wang, M. Y., Zhang, X. Z., Lu, L., Tang, H., Liu, Q. Q., Lei, S. Y., Qiao, G. J., Liu, G. W. A novel CoP@AAH cocatalyst leads to excellent stability and enhanced photocatalytic H2 evolution of CdS by structurally separating the photogenerated carriers. Appl. Catal. B: Environ. 2023, 320, 122004.

    Article  CAS  Google Scholar 

  56. Xue, X. D., Dong, W. J., Luan, Q. J., Gao, H. Y., Wang, G. Novel interfacial lateral electron migration pathway formed by constructing metallized CoP2/CdS interface for excellent photocatalytic hydrogen production. Appl. Catal. B: Environ. 2023, 334, 122860.

    Article  CAS  Google Scholar 

  57. Meng, L. H., Zhao, C., Wang, T. Y., Chu, H. Y., Wang, C. C. Efficient ciprofloxacin removal over Z-scheme ZIF-67/V-BiOIO3 heterojunctions: Insight into synergistic effect between adsorption and photocatalysis. Sep. Purif. Technol. 2023, 313, 123511.

    Article  CAS  Google Scholar 

  58. Zhao, F., Law, Y. L., Zhang, N., Wang, X., Wu, W. L., Luo, Z. T., Wang, Y. H. Constructing spatially separated cage-like Z-scheme heterojunction photocatalyst for enhancing photocatalytic H2 evolution. Small 2023, 19, 2208266.

    Article  CAS  Google Scholar 

  59. She, X. J., Xu, H., Yu, Y. H., Li, L., Zhu, X. W., Mo, Z., Song, Y. H., Wu, J. J., Yuan, S. Q., Li, H. M. Accelerating photogenerated charge kinetics via the synergetic utilization of 2D semiconducting structural advantages and noble-metal-free schottky junction effect. Small 2019, 15, 1804613.

    Article  Google Scholar 

  60. Qi, K. Z., Lv, W. X., Khan, I., Liu, S. Y. Photocatalytic H2 generation via CoP quantum-dot-modified g-C3N4 synthesized by electroless plating. Chin. J. Catal. 2020, 41, 114–121.

    Article  CAS  Google Scholar 

  61. Du, C., Zhang, Q., Lin, Z. Y., Yan, B., Xia, C. X., Yang, G. W. Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2019, 248, 193–201.

    Article  CAS  Google Scholar 

  62. Cao, S. W., Shen, B. J., Tong, T., Fu, J. W., Yu, J. G. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2018, 28, 1800136.

    Article  Google Scholar 

  63. Yi, W. J., Du, X., Zhang, M., Yi, S. S., Xia, R. H., Li, C. Q., Liu, Y., Liu, Z. Y., Zhang, W. L., Yue, X. Z. Rational distribution of Ru nanodots on 2D Ti3-xC2Ty/g-C3N4 heterostructures for boosted photocatalytic H2 evolution. Nano Res. 2023, 16, 6652–6660.

    Article  CAS  Google Scholar 

  64. Hao, X. Q., Wang, Y. C., Zhou, J., Cui, Z. W., Wang, Y., Zou, Z. G. Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution. Appl. Catal. B: Environ. 2018, 221, 302–311.

    Article  CAS  Google Scholar 

  65. Li, X., Yu, J. G., Low, J. X., Fang, Y. P., Xiao, J., Chen, X. B. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 2015, 3, 2485–2534.

    Article  CAS  Google Scholar 

  66. Li, Z. H., Dong, T. T., Zhang, Y. F., Wu, L., Li, J. Q., Wang, X. X., Fu, X. Z. Studies on In(OH)ySz solid solutions: Syntheses, characterizations, electronic structure, and visible-light-driven photocatalytic activities. J. Phys. Chem. C 2007, 111, 4727–4733.

    Article  CAS  Google Scholar 

  67. Wei, X. Q., Song, S. J., Cai, W. W., Luo, X., Jiao, L., Fang, Q., Wang, X. S., Wu, N. N., Luo, Z., Wang, H. J.; et al. Tuning the spin state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway. Chem 2023, 9, 181–197.

    Article  CAS  Google Scholar 

  68. Xu, Y., Schoonen, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543–556.

    Article  CAS  Google Scholar 

  69. Zhang, Z., Yates, Jr. J. T. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520–5551.

    Article  CAS  PubMed  Google Scholar 

  70. Zhu, J. F., Bi, Q. Y., Tao, Y. H., Guo, W. Y., Fan, J. C., Min, Y. L., Li, G. S. Mo-modified ZnIn2S4@NiTiO3 S-scheme heterojunction with enhanced interfacial electric field for efficient visible-lightdriven hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2213131.

    Article  CAS  Google Scholar 

  71. Lin, Y., Zhang, Q., Li, Y. H., Liu, Y. P., Xu, K. J., Huang, J. N., Zhou, X. S., Peng, F. The evolution from a typical type-I CdS/ZnS to type-II and Z-scheme hybrid structure for efficient and stable hydrogen production under visible light. ACS Sustain. Chem. Eng. 2020, 8, 4537–4546.

    Article  CAS  Google Scholar 

  72. Zhang, X. W., Li, Z., Zeng, B., Li, C., Han, H. X. EPR study of charge separation associated states and reversibility of surface bound superoxide radicals in SrTiO3 photocatalyst. J. Energy Chem. 2022, 70, 388–393.

    Article  CAS  Google Scholar 

  73. Zuo, G. C., Wang, Y. T., Teo, W. L., Xie, A. M., Guo, Y., Dai, Y. X., Zhou, W. Q., Jana, D., Xian, Q. M., Dong, W. et al. Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2TX MXene for photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2020, 59, 11287–11292.

    Article  CAS  Google Scholar 

  74. Deng, K., Mao, Q. Q., Wang, W. X., Wang, P., Wang, Z. Q., Xu, Y., Li, X. M., Wang, H. J., Wang, L. Defect-rich low-crystalline Rh metallene for efficient chlorine-free H2 production by hydrazine-assisted seawater splitting. Appl. Catal. B: Environ. 2022, 310, 121338.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 22179068, 52272222, 52072197, and 52171140), the 111 Project of China (No. D20017), the Natural Science Foundation of Shandong Province (No. ZR2019JQ14), the Major Scientific and Technological Innovation Project of Shandong Province (No. 2019JZZY020405), the Key Research and Development Program of Jiangsu Province (No. BE2021070), the Scientific and Technological Innovation Promotion Project for Small-medium Enterprises of Shandong Province (No. 2022TSGC1257), the Shandong Province “Double-Hundred Talent Plan” (Nos. WST2019011, WST2020003, and WST2021021), and the Major Research Program of Jining City (No. 2020ZDZP024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Lin.

Electronic Supplementary Material

12274_2024_6636_MOESM1_ESM.pdf

MOF-templated tubular Ni1-xCoxS2-CdS heterojunction with intensified direct Z-scheme charge transmission for highly promoted visible-light photocatalysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Qiu, Y., Xin, X. et al. MOF-templated tubular Ni1-xCoxS2-CdS heterojunction with intensified direct Z-scheme charge transmission for highly promoted visible-light photocatalysis. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6636-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6636-z

Keywords

Navigation