Skip to main content
Log in

Bright InP quantum dots by Ga-doping for red emitters

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Environment-friendly indium phosphide (InP)-based quantum dots (QDs) with efficient red-emitting properties are sufficiently needed to satisfy the requirement of burgeoning display and lighting technology. Currently, the syntheses of InP QDs using tris(trimethylsilyl)phosphine as the precursor are highly toxic and expensive. Herein, we successfully introduced gallium (Ga) ions into tris(dimethylamino)phosphine-based red InP cores through thermally-promoted cation exchange, and the obtained Ga-doped InP cores exhibited significantly increased photoluminescence quantum yields (PLQY) of up to 26%. The existence of Ga was directly confirmed by energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy, and the functions of Ga were systematically studied. After subsequent coating of Ga-doped InP cores with ZnSeS and ZnS shells, the resulting Ga-InP/ZnSeS/ZnS QDs achieved a high PLQY of 62% with an emission maximum at 640 nm. In contrast, without Ga-doping, the PLQY only attained 36% using the same synthetic approach. This indicated an approximate 1.7-fold increase in PLQY. The enhancement of photoluminescence was related to the Ga3+, as it not only passivated surface defects of InP cores but also reduced core-shell interface stress. The Ga-InP/ZnSeS/ZnS QDs exhibited good stability towards heat treatment and ultraviolet (UV) irradiation. Moreover, the red light-emitting diode (LED) based on Ga-InP/ZnSeS/ZnS QDs performed well in a wide injected current range of 2 to 200 mA, with a maximum power efficiency of 0.68 lm/W. This work showcases Ga-doping through cation exchange as a promising strategy for enhancing the efficiency of InP-based red emitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Arquer, F. P. G.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.

    Article  Google Scholar 

  2. Jang, E.; Jang, H. Review: Quantum dot light-emitting diodes. Chem. Rev. 2023, 123, 4663–4692.

    Article  CAS  PubMed  Google Scholar 

  3. Mohkam, M.; Sadraeian, M.; Lauto, A.; Gholami, A.; Nabavizadeh, S. H.; Esmaeilzadeh, H.; Alyasin, S. Exploring the potential and safety of quantum dots in allergy diagnostics. Microsyst. Nanoeng. 2023, 9, 145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cui, Z. J.; Yang, D.; Qin, S. T.; Wen, Z. Q.; He, H. Y.; Mei, S. L.; Zhang, W. L.; Xing, G. C.; Liang, C.; Guo, R. Q. Advances, challenges, and perspectives for heavy-metal-free blue-emitting indium phosphide quantum dot light-emitting diodes. Adv. Opt. Mater. 2023, 11, 2202036.

    Article  CAS  Google Scholar 

  5. Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.

    Article  CAS  PubMed  Google Scholar 

  6. Hanifi, D. A.; Bronstein, N. D.; Koscher, B. A.; Nett, Z.; Swabeck, J. K.; Takano, K.; Schwartzberg, A. M.; Maserati, L.; Vandewal, K.; Van De Burgt, Y. et al. Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield. Science 2019, 363, 1199–1202.

    Article  CAS  PubMed  Google Scholar 

  7. Fakharuddin, A.; Gangishetty, M. K.; Abdi-Jalebi, M.; Chin, S. H.; Bin Mohd Yusoff, A. R.; Congreve, D. N.; Tress, W.; Deschler, F.; Vasilopoulou, M.; Bolink, H. J. Perovskite light-emitting diodes. Nat. Electron. 2022, 5, 203–216.

    Article  CAS  Google Scholar 

  8. Ren, X.; Hu, H. L.; Chen, Z. Y.; Gao, L. X.; Hao, H.; Liu, Y.; Jiang, F. L. Highly stable perovskite nanocrystals with pure red emission for displays. ACS Appl. Nano Mater. 2023, 6, 6092–6102.

    Article  CAS  Google Scholar 

  9. Hardman, R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 2006, 114, 165–172.

    Article  PubMed  Google Scholar 

  10. Cui, Z. J.; Qin, S. T.; He, H. Y.; Wen, Z. Q.; Yang, D.; Piao, Z.; Mei, S. L.; Zhang, W. L.; Guo, R. Q. Sequential growth of InP quantum dots and coordination between interfacial heterovalency and shell confinement: Implication for light-emitting devices. ACS Appl. Nano Mater. 2024, 7, 1181–1190.

    Article  CAS  Google Scholar 

  11. Qin, S. T.; Cui, Z. J.; Wen, Z. Q.; Yang, D.; He, H. Y.; Zhao, J. C.; Zhang, M. L.; Mei, S. L.; Zhang, W. L.; Guo, R. Q. Unveiling the novel interfacial anchoring effect of neodymium(III) for realization of blue-emitting InP/ZnS quantum dots. Appl. Surf. Sci. 2023, 630, 157483.

    Article  CAS  Google Scholar 

  12. Kim, K.; Yoo, D.; Choi, H.; Tamang, S.; Ko, J. H.; Kim, S.; Kim, Y. H.; Jeong, S. Halide-amine co-passivated indium phosphide colloidal quantum dots in tetrahedral shape. Angew. Chem., Int. Ed. 2016, 55, 3714–3718.

    Article  CAS  Google Scholar 

  13. Chen, B.; Li, D. Y.; Wang, F. InP quantum dots: Synthesis and lighting applications. Small 2020, 16, 2002454.

    Article  CAS  Google Scholar 

  14. Almeida, G.; Ubbink, R. F.; Stam, M.; Du Fossé, I.; Houtepen, A. J. InP colloidal quantum dots for visible and near-infrared photonics. Nat. Rev. Mater. 2023, 8, 742–758.

    Article  CAS  Google Scholar 

  15. Byun, H. J.; Song, W. S.; Yang, H. Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source. Nanotechnology 2011, 22, 235605.

    Article  PubMed  Google Scholar 

  16. Matsumoto, T.; Maenosono, S.; Yamaguchi, Y. Organometallic synthesis of InP quantum dots using tris(dimethylamino)phosphine as a phosphorus source. Chem. Lett. 2004, 33, 1492–1493.

    Article  CAS  Google Scholar 

  17. Xu, S.; Ziegler, J.; Nann, T. Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. J. Mater. Chem. 2008, 18, 2653–2656.

    Article  CAS  Google Scholar 

  18. Xie, R. G.; Battaglia, D.; Peng, X. G. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 2007, 129, 15432–15433.

    Article  CAS  PubMed  Google Scholar 

  19. Li, L.; Reiss, P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J. Am. Chem. Soc. 2008, 130, 11588–11589.

    Article  CAS  PubMed  Google Scholar 

  20. Song, W. S.; Lee, H. S.; Lee, J. C.; Jang, D. S.; Choi, Y.; Choi, M.; Yang, H. Amine-derived synthetic approach to color-tunable InP/ZnS quantum dots with high fluorescent qualities. J. Nanopart. Res. 2013, 15, 1750.

    Article  Google Scholar 

  21. Tessier, M. D.; Dupont, D.; De Nolf, K.; De Roo, J.; Hens, Z. Economic and size-tunable synthesis of InP/ZnE (E = S, Se) colloidal quantum dots. Chem. Mater. 2015, 27, 4893–4898.

    Article  CAS  Google Scholar 

  22. Hahm, D.; Chang, J. H.; Jeong, B. G.; Park, P.; Kim, J.; Lee, S.; Choi, J.; Kim, W. D.; Rhee, S.; Lim, J. et al. Design principle for bright, robust, and color-pure InP/ZnSexS1−x/ZnS heterostructures. Chem. Mater. 2019, 31, 3476–3484.

    Article  CAS  Google Scholar 

  23. Jo, J. H.; Kim, J. H.; Lee, K. H.; Han, C. Y.; Jang, E. P.; Do, Y. R.; Yang, H. High-efficiency red electroluminescent device based on multishelled InP quantum dots. Opt. Lett. 2016, 41, 3984–3987.

    Article  CAS  PubMed  Google Scholar 

  24. Jalali, H. B.; Sadeghi, S.; Yuksel, I. B. D.; Onal, A.; Nizamoglu, S. Past, present and future of indium phosphide quantum dots. Nano Res. 2022, 15, 4468–4489.

    Article  CAS  Google Scholar 

  25. Tessier, M. D.; De Nolf, K.; Dupont, D.; Sinnaeve, D.; De Roo, J.; Hens, Z. Aminophosphines: A double role in the synthesis of colloidal indium phosphide quantum dots. J. Am. Chem. Soc. 2016, 138, 5923–5929.

    Article  CAS  PubMed  Google Scholar 

  26. Kim, M. R.; Chung, J. H.; Lee, M.; Lee, S.; Jang, D. J. Fabrication, spectroscopy, and dynamics of highly luminescent core–shell InP@ZnSe quantum dots. J. Colloid Interface Sci. 2010, 350, 5–9.

    Article  CAS  PubMed  Google Scholar 

  27. Shin, S.; Gwak, N.; Yoo, H.; Jang, H.; Lee, M.; Kang, K.; Kim, S.; Yeon, S.; Ann Kim, T.; Kim, S. et al. Fluoride-free synthesis strategy for luminescent InP cores and effective shelling processes via combinational precursor chemistry. Chem. Eng. J. 2023, 466, 143223.

    Article  CAS  Google Scholar 

  28. Li, H. Y.; Bian, Y. Y.; Zhang, W. J.; Wu, Z. H.; Ahn, T. K.; Shen, H. B.; Du, Z. L. High performance InP-based quantum dot light-emitting diodes via the suppression of field-enhanced electron delocalization. Adv. Funct. Mater. 2022, 32, 2204529.

    Article  CAS  Google Scholar 

  29. Wu, Z. H.; Liu, P.; Zhang, W. D.; Wang, K.; Sun, X. W. Development of InP quantum dot-based light-emitting diodes. ACS Energy Lett. 2020, 5, 1095–1106.

    Article  CAS  Google Scholar 

  30. Li, H. Y.; Zhang, W. J.; Bian, Y. Y.; Ahn, T. K.; Shen, H. B.; Ji, B. T. ZnF2-assisted synthesis of highly luminescent InP/ZnSe/ZnS quantum dots for efficient and stable electroluminescence. Nano Lett. 2022, 22, 4067–4073.

    Article  CAS  PubMed  Google Scholar 

  31. Thuy, U. T. D.; Reiss, P.; Liem, N. Q. Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots. Appl. Phys. Lett. 2010, 97, 193104.

    Article  Google Scholar 

  32. Lim, J.; Bae, W. K.; Lee, D.; Nam, M. K.; Jung, J.; Lee, C.; Char, K.; Lee, S. InP@ZnSeS, core@composition gradient shell quantum dots with enhanced stability. Chem. Mater. 2011, 23, 4459–4463.

    Article  CAS  Google Scholar 

  33. Chen, P. X.; Liu, H.; Cui, Y. Y.; Liu, C.; Li, Y. W.; Gao, Y.; Cheng, J. J.; He, T. C. Inner shell influence on the optical properties of InP/ZnSeS/ZnS quantum dots. J. Phys. Chem. C 2023, 127, 2464–2470.

    Article  CAS  Google Scholar 

  34. Kim, S.; Kim, T.; Kang, M.; Kwak, S. K.; Yoo, T. W.; Park, L. S.; Yang, I.; Hwang, S.; Lee, J. E.; Kim, S. K. et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. J. Am. Chem. Soc. 2012, 134, 3804–3809.

    Article  CAS  PubMed  Google Scholar 

  35. Park, J. P.; Lee, J. J.; Kim, S. W. Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process. Sci. Rep. 2016, 6, 30094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Friedfeld, M. R.; Stein, J. L.; Johnson, D. A.; Park, N.; Henry, N. A.; Enright, M. J.; Mocatta, D.; Cossairt, B. M. Effects of Zn2+ and Ga3+ doping on the quantum yield of cluster-derived InP quantum dots. J. Chem. Phys. 2019, 151, 194702.

    Article  PubMed  Google Scholar 

  37. Jo, J. H.; Jo, D. Y.; Choi, S. W.; Lee, S. H.; Kim, H. M.; Yoon, S. Y.; Kim, Y.; Han, J. N.; Yang, H. Highly bright, narrow emissivity of InP quantum dots synthesized by aminophosphine: Effects of double shelling scheme and Ga treatment. Adv. Opt. Mater. 2021, 9, 2100427.

    Article  CAS  Google Scholar 

  38. Zhang, H.; Ma, X. Y.; Lin, Q. L.; Zeng, Z. P.; Wang, H. Z.; Li, L. S.; Shen, H. B.; Jia, Y.; Du, Z. L. High-brightness blue InP quantum dot-based electroluminescent devices: The role of shell thickness. J. Phys. Chem. Lett. 2020, 11, 960–967.

    Article  CAS  PubMed  Google Scholar 

  39. Srivastava, V.; Kamysbayev, V.; Hong, L.; Dunietz, E.; Klie, R. F.; Talapin, D. V. Colloidal chemistry in molten salts: Synthesis of luminescent In1−xGaxP and In1−xGaxAs quantum dots. J. Am. Chem. Soc. 2018, 140, 12144–12151.

    Article  CAS  PubMed  Google Scholar 

  40. Kim, K. H.; Jo, J. H.; Jo, D. Y.; Han, C. Y.; Yoon, S. Y.; Kim, Y.; Kim, Y. H.; Ko, Y. H.; Kim, S. W.; Lee, C. et al. Cation-exchange-derived InGaP alloy quantum dots toward blue emissivity. Chem. Mater. 2020, 32, 3537–3544.

    Article  CAS  Google Scholar 

  41. Hudson, M. H.; Gupta, A.; Srivastava, V.; Janke, E. M.; Talapin, D. V. Synthesis of In1−xGaxP quantum dots in Lewis basic molten salts: The effects of surface chemistry, reaction conditions, and molten salt composition. J. Phys. Chem. C 2022, 126, 1564–1580.

    Article  CAS  Google Scholar 

  42. Wegner, K. D.; Pouget, S.; Ling, W. L.; Carrière, M.; Reiss, P. Gallium-a versatile element for tuning the photoluminescence properties of InP quantum dots. Chem. Commun. 2019, 55, 1663–1666.

    Article  CAS  Google Scholar 

  43. Parvizian, M.; Bechter, J.; Huber, J.; Chettata, N.; De Roo, J. An experimental introduction to colloidal nanocrystals through InP and InP/ZnS quantum dots. J. Chem. Educ. 2023, 100, 1613–1620.

    Article  CAS  Google Scholar 

  44. Kim, Y.; Ham, S.; Jang, H.; Min, J. H.; Chung, H.; Lee, J.; Kim, D.; Jang, E. Bright and uniform green light emitting InP/ZnSe/ZnS quantum dots for wide color gamut displays. ACS Appl. Nano Mater. 2019, 2, 1496–1504.

    Article  CAS  Google Scholar 

  45. Cho, E.; Jang, H.; Lee, J.; Jang, E. Modeling on the size dependent properties of InP quantum dots: A hybrid functional study. Nanotechnology 2013, 24, 215201.

    Article  PubMed  Google Scholar 

  46. Suh, Y. H.; Lee, S.; Jung, S. M.; Bang, S. Y.; Yang, J. J.; Fan, X. B.; Zhan, S. J.; Samarakoon, C.; Jo, J. W.; Kim, Y. et al. Engineering core size of InP quantum dot with incipient ZnS for blue emission. Adv. Opt. Mater. 2022, 10, 2102372.

    Article  CAS  Google Scholar 

  47. Gao, Y.; Peng, X. G. Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: The effects of surface and ligands. J. Am. Chem. Soc. 2015, 137, 4230–4235.

    Article  CAS  PubMed  Google Scholar 

  48. Choi, Y.; Hahm, D.; Bae, W. K.; Lim, J. Heteroepitaxial chemistry of zinc chalcogenides on InP nanocrystals for defect-free interfaces with atomic uniformity. Nat. Commun. 2023, 14, 43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu, Q. Q.; Cao, F.; Wang, S.; Wang, Y. M.; Sun, Z. J.; Feng, J. W.; Liu, Y.; Wang, L.; Cao, Q.; Li, Y. G. et al. Quasi-shell-growth strategy achieves stable and efficient green InP quantum dot light-emitting diodes. Adv. Sci. (Weinh.) 2022, 9, 2200959.

    CAS  PubMed  Google Scholar 

  50. Tamang, S.; Lincheneau, C.; Hermans, Y.; Jeong, S.; Reiss, P. Chemistry of InP nanocrystal syntheses. Chem. Mater. 2016, 28, 2491–2506.

    Article  CAS  Google Scholar 

  51. Owen, J. The coordination chemistry of nanocrystal surfaces. Science 2015, 347, 615–616.

    Article  CAS  PubMed  Google Scholar 

  52. Cho, H.; Jung, S.; Kim, M.; Kwon, H.; Bang, J. Effects of Zn impurity on the photoluminescence properties of InP quantum Dots. J. Lumin. 2022, 245, 118647.

    Article  CAS  Google Scholar 

  53. Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.

    Article  CAS  PubMed  Google Scholar 

  54. Shen, C.; Zhu, Y. Q.; Li, Z. X.; Li, J. L.; Tao, H.; Zou, J. H.; Xu, X. Q.; Xu, G. Highly luminescent InP-In(Zn)P/ZnSe/ZnS core/shell/shell colloidal quantum dots with tunable emissions synthesized based on growth-doping. J. Mater. Chem. C 2021, 9, 9599–9609.

    Article  CAS  Google Scholar 

  55. Chen, Y. R.; Wang, R. X.; Kuang, Y. M.; Bian, Y. Y.; Chen, F.; Shen, H. B.; Chi, Z.; Ran, X.; Guo, L. J. Suppressed Auger recombination and enhanced emission of InP/ZnSe/ZnS quantum dots through inner shell manipulation. Nanoscale 2023, 15, 18920–18927.

    Article  CAS  PubMed  Google Scholar 

  56. Lim, J.; Park, M.; Bae, W. K.; Lee, D.; Lee, S.; Lee, C.; Char, K. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots. ACS Nano 2013, 7, 9019–9026.

    Article  CAS  PubMed  Google Scholar 

  57. Hao, H.; Hu, H. L.; Liu, Y.; Jiang, F. L. Trioctylphosphine- and octanethiol-induced photoluminescence recovery of CdSe/ZnS quantum dots after dilution-quenching: Implications for quantum dot films. ACS Appl. Nano Mater. 2023, 6, 3085–3094.

    Article  CAS  Google Scholar 

  58. Hu, H. L.; Hao, H.; Ren, X.; Chen, Z. Y.; Liu, M.; Liu, Y.; Jiang, F. L. Bright InP quantum dots by mid-synthetic modification with zinc halides. Inorg. Chem. 2023, 62, 2877–2886.

    Article  CAS  PubMed  Google Scholar 

  59. Roy, P.; Virmani, M.; Pillai, P. P. Blue-emitting InP quantum dots participate in an efficient resonance energy transfer process in water. Chem. Sci. 2023, 14, 5167–5176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Key R&D Program of China (No. 2022YFA1504703), and the National Natural Science Foundation of China (No. 21973071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Lei Jiang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, KZ., He, XH., Chen, ZY. et al. Bright InP quantum dots by Ga-doping for red emitters. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6603-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6603-8

Keywords

Navigation