Skip to main content
Log in

The difference of the ionomer–catalyst interfaces for poly(aryl piperidinium) hydroxide exchange membrane fuel cells and proton exchange membrane fuel cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The microstructures of the ionomer–catalyst interfaces in the catalyst layers are important for the fuel cell performance because they determine the distribution of the active triple-phase boundaries. Here, we investigate the ionomer–catalyst interactions in hydroxide exchange membrane fuel cells (HEMFCs) using poly(aryl piperidinium) and compare them with proton exchange membrane fuel cells (PEMFCs). It is found that different catalyst layer microstructures are between the two types of fuel cell. The ionomer/carbon (I/C) ratio does not have a remarkable impact on the HEMFC performance, while it has a strong impact on the PEMFC performance, indicating the weaker interaction between the HEMFC ionomer and catalyst. Molecular dynamics simulations demonstrate that the HEMFC ionomer tends to distribute on the carbon support, unlike the PEMFC ionomer, which heavily covers the Pt nanoparticles. These results suggest that the poisoning effect of the ionomer on the catalyst is much weaker in HEMFCs, and the improved ionomer/catalyst interaction is beneficial for the HEMFC performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, S.; Sun, T.; Li, J. R.; Li, Q. Z.; Hou, C. C.; Sun, Q. The cathode catalysts of hydrogen fuel cell: From laboratory toward practical application. Nano Res. 2023, 16, 4365–4380.

    Article  Google Scholar 

  2. Kang, Y. Q.; Wang, J. Q.; Wei, Y. P.; Wu, Y. L.; Xia, D. S.; Gan, L. Engineering nanoporous and solid core–shell architectures of low-platinum alloy catalysts for high power density PEM fuel cells. Nano Res. 2022, 15, 6148–6155.

    Article  CAS  Google Scholar 

  3. Zhao, F. L.; Zheng, L. R.; Yuan, Q.; Zhang, Q. H.; Sheng, T.; Yang, X. T.; Gu, L.; Wang, X. PtCu subnanoclusters epitaxial on octahedral PtCu/Pt skin matrix as ultrahigh stable cathode electrocatalysts for room-temperature hydrogen fuel cells. Nano Res. 2023, 16, 2252–2258.

    Article  CAS  Google Scholar 

  4. Chao, T. T.; Luo, X.; Zhu, M. Z.; Hu, Y. M.; Zhang, Y. D.; Qu, Y. T.; Peng, H. T.; Shen, X. S.; Zheng, X. S.; Zhang, L. et al. The promoting effect of interstitial hydrogen on the oxygen reduction performance of PtPd alloy nanotubes for fuel cells. Nano Res. 2023, 16, 2366–2372.

    Article  CAS  Google Scholar 

  5. Ma, S.; Lin, M.; Lin, T. E.; Lan, T.; Liao, X.; Maréchal, F.; Van Herle, J.; Yang, Y. P.; Dong, C. Q.; Wang, L. G. Fuel cell-battery hybrid systems for mobility and off-grid applications: A review. Renew. Sustain. Energy Rev. 2021, 135, 110119.

    Article  Google Scholar 

  6. Wu, D.; Peng, C.; Yin, C.; Tang, H. Review of system integration and control of proton exchange membrane fuel cells. Electrochem. Energy Rev. 2020, 3, 466–505.

    Article  Google Scholar 

  7. Gottesfeld, S.; Dekel, D. R.; Page, M.; Bae, C.; Yan, Y. S.; Zelenay, P.; Kim, Y. S. Anion exchange membrane fuel cells: Current status and remaining challenges. J. Power Sources 2018, 375, 170–184.

    Article  CAS  Google Scholar 

  8. Gu, S.; Cai, R.; Luo, T.; Chen, Z. W.; Sun, M. W.; Liu, Y.; He, G. H.; Yan, Y. S. A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells. Angew. Chem., Int. Ed. 2009, 48, 6499–6502.

    Article  CAS  Google Scholar 

  9. Peng, X.; Kulkarni, D.; Huang, Y.; Omasta, T. J.; Ng, B.; Zheng, Y. W.; Wang, L. Q.; LaManna, J. M.; Hussey, D. S.; Varcoe, J. R. et al. Using operando techniques to understand and design high performance and stable alkaline membrane fuel cells. Nat. Commun. 2020, 11, 3561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xue, Y. R.; Shi, L.; Liu, X. R.; Fang, J. J.; Wang, X. D.; Setzler, B. P.; Zhu, W.; Yan, Y. S.; Zhuang, Z. B. A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells. Nat. Commun. 2020, 11, 5651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ohyama, J.; Sato, T.; Yamamoto, Y.; Arai, S.; Satsuma, A. Size specifically high activity of Ru nanoparticles for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 2013, 153, 8016–8021.

    Article  Google Scholar 

  12. Setzler, B. P.; Zhuang, Z. B.; Wittkopf, J. A.; Yan, Y. S. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells. Nat. Nanotechnol. 2016, 11, 1020–1025.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, R. Z.; Chen, S. H.; Wang, L. Q.; Wang, D. S. Nanoscale metal particle modified single-atom catalyst: Synthesis, characterization, and application. Adv. Mater. 2024, 36, 2304713.

    Article  CAS  Google Scholar 

  14. Li, R. Z.; Zhao, J.; Liu, B. Z.; Wang, D. S. Atomic distance engineering in metal catalysts to regulate catalytic performance. Adv. Mater. 2024, 36, 2308653.

    Article  CAS  Google Scholar 

  15. Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

    Article  CAS  Google Scholar 

  16. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    Article  CAS  Google Scholar 

  17. Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

    Article  CAS  Google Scholar 

  18. Sui, R.; Chai, J.; Liu, X. R.; Pei, J. J.; Zhang, X. J.; Wang, X. D.; Wang, Y.; Dong, J. C.; Zhu, W.; Chen, W. X. et al. Introducing highly polarizable cation in M-N-C type catalysts to boost their oxygen reduction reaction performance. Appl. Catal. B: Environ. 2024, 341, 123251.

    Article  CAS  Google Scholar 

  19. Sui, R.; Zhang, X. J.; Wang, X. D.; Wang, X. Y.; Pei, J. J.; Zhang, Y. F.; Liu, X. R.; Chen, W. X.; Zhu, W.; Zhuang, Z. B. Silver based single atom catalyst with heteroatom coordination environment as high performance oxygen reduction reaction catalyst. Nano Res. 2022, 15, 7968–7975.

    Article  CAS  Google Scholar 

  20. Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

    Article  CAS  PubMed  Google Scholar 

  21. Xue, Y. R.; Wang, X. D.; Zhang, X. Q.; Fang, J. J.; Xu, Z. Y.; Zhang, Y. F.; Liu, X. R.; Liu, M. Y.; Zhu, W.; Zhuang, Z. B. Cost-effective hydrogen oxidation reaction catalysts for hydroxide exchange membrane fuel cells. Acta Phys. Chim. Sin. 2021, 37, 2009103.

    Google Scholar 

  22. Wang, T.; Shi, L.; Wang, J. H.; Zhao, Y.; Setzler, B. P.; Rojas-Carbonell, S.; Yan, Y. S. High- performance hydroxide exchange membrane fuel cells through optimization of relative humidity, backpressure and catalyst selection. J. Electrochem. Soc. 2019, 166, F3305–F3310.

    Article  CAS  Google Scholar 

  23. Li, Q. H.; Peng, H. Q.; Wang, Y. M.; Xiao, L.; Lu, J. T.; Zhuang, L. The Comparability of Pt to Pt-Ru in catalyzing the hydrogen oxidation reaction for alkaline polymer electrolyte fuel cells operated at 80 °C. Angew. Chem., Int. Ed. 2019, 58, 1442–1446.

    Article  CAS  Google Scholar 

  24. Peng, H. Q.; Li, Q. H.; Hu, M. X.; Xiao, L.; Lu, J. T.; Zhuang, L. Alkaline polymer electrolyte fuel cells stably working at 80 °C. J. Power Sources 2018, 390, 165–167.

    Article  CAS  Google Scholar 

  25. Alia, S. M.; Pivovar, B. S.; Yan, Y. S. Platinum- coated copper nanowires with high activity for hydrogen oxidation reaction in base. J. Am. Chem. Soc. 2013, 135, 13473–13478.

    Article  CAS  PubMed  Google Scholar 

  26. Xu, K.; Chen, Y.; Liu, M. L. Triple-phase boundaries (TPBs) in fuel cells and electrolyzers. Encycl. Energy Storage 2022, 2, 299–328.

    Google Scholar 

  27. O’Hayre, R.; Barnett, D. M.; Prinz, F. B. The triple phase boundary: A mathematical model and experimental investigations for fuel cells. J. Electrochem. Soc 2005, 152, A439–A444.

    Article  Google Scholar 

  28. Zhang, X. Y.; Liu, Q. T.; Shui, J. L. Effect of catalyst layer hydrophobicity on Fe-N-C proton exchange membrane fuel cells. ChemElectroChem 2020, 7, 1775–1780.

    Article  CAS  Google Scholar 

  29. Kodama, K.; Motobayashi, K.; Shinohara, A.; Hasegawa, N.; Kudo, K.; Jinnouchi, R.; Osawa, M.; Morimoto, Y. Effect of the side-chain structure of perfluoro-sulfonic acid ionomers on the oxygen reduction reaction on the surface of Pt. ACS Catal. 2018, 8, 694–700.

    Article  CAS  Google Scholar 

  30. Ahn, C. Y.; Cheon, J. Y.; Joo, S. H.; Kim, J. Effects of ionomer content on Pt catalyst/ordered mesoporous carbon support in polymer electrolyte membrane fuel cells. J. Power Sources 2013, 222, 477–482.

    Article  CAS  Google Scholar 

  31. Chen, G. Y.; Wang, C.; Lei, Y. J.; Zhang, J. B.; Mao, Z. M.; Mao, Z. Q.; Guo, J. W.; Li, J. Q.; Ouyang, M. G. Gradient design of Pt/C ratio and Nafion content in cathode catalyst layer of PEMFCs. Int. J. Hydrogen Energy 2017, 42, 29960–29965.

    Article  CAS  Google Scholar 

  32. Chen, F. D.; Chen, S. G.; Wang, A. X.; Wang, M.; Guo, L.; Wei, Z. D. Blocking the sulfonate group in Nafion to unlock platinum’s activity in membrane electrode assemblies. Nat. Catal. 2023, 6, 392–401.

    Article  CAS  Google Scholar 

  33. Zhou, Y. W.; Yu, H. M.; Xie, F.; Zhao, Y.; Sun, X. Y.; Yao, D. W.; Jiang, G.; Geng, J. T.; Shao, Z. G. Improving cell performance for anion exchange membrane fuel cells with FeNC cathode by optimizing ionomer content. Int. J. Hydrogen Energy 2023, 48, 5266–5275.

    Article  CAS  Google Scholar 

  34. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

    Article  CAS  Google Scholar 

  35. Plimpton, S.; Pollock, R.; Stevens, M. Particle-mesh Ewald and rRESPA for parallel molecular dynamics simulations. In Proceedings of the 8th SIAM Conference on Parallel Processing or Scientific Computing, Minneapolis, USA, 1997.

  36. Portella, G.; Pohl, P.; de Groot, B. L. Invariance of single-file water mobility in gramicidin-like peptidic pores as function of pore length. Biophys. J. 2007, 92, 3930–3937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 2016, 42, 81–101

    Article  CAS  Google Scholar 

  38. Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications, 3rd ed.; Elsevier: Amsterdam, 2023.

    Google Scholar 

  39. Purdue, M. J.; Qiao, Z. W. Molecular simulation study of wet flue gas adsorption on zeolite 13X. Microporous Mesoporous Mater. 2018, 261, 181–197.

    Article  CAS  Google Scholar 

  40. Joos, L.; Swisher, J. A.; Smit, B. Molecular simulation study of the competitive adsorption of H2O and CO2 in zeolite 13X. Langmuir 2013, 29, 15936–15942.

    Article  CAS  PubMed  Google Scholar 

  41. Dehghani, M.; Asghari, M.; Mohammadi, A. H.; Mokhtari, M. Molecular simulation and Monte Carlo study of structural-transport-properties of PEBA-MFI zeolite mixed matrix membranes for CO2, CH4 and N2 separation. Comput. Chem. Eng. 2017, 103, 12–22.

    Article  CAS  Google Scholar 

  42. Zhou, W. N.; Wang, H. B.; Zhang, Z.; Chen, H. X.; Liu, X. L. Molecular simulation of CO2/CH4/H2O competitive adsorption and diffusion in brown coal. RSC Adv. 2019, 9, 3004–3011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hou, T. J.; Zhu, L. L.; Xu, X. J. Adsorption and diffusion of benzene in ITQ-1 type zeolite: Grand canonical Monte Carlo and molecular dynamics simulation study. J. Phys. Chem. B 2000, 104, 9356–9364.

    Article  CAS  Google Scholar 

  44. Mashio, T.; Ohma, A.; Yamamoto, S.; Shinohara, K. Analysis of reactant gas transport in a catalyst layer. ECS Trans. 2007, 11, 529–542.

    Article  CAS  Google Scholar 

  45. Bird, R. B.; Stewart, W. E.; Lightfoot, E. N.; Meredith, R. E. Transport phenomena. J. Electrochem. Soc. 1961, 108, 78C.

    Article  Google Scholar 

  46. Wang, J. H.; Zhao, Y.; Setzler, B. P.; Rojas-Carbonell, S.; Ben Yehuda, C.; Amel, A.; Page, M.; Wang, L.; Hu, K. D.; Shi, L. et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nat. Energy 2019, 4, 392–398.

    Article  CAS  Google Scholar 

  47. Thompson, S. T.; Peterson, D.; Ho, D.; Papageorgopoulos, D. Perspective—The next decade of AEMFCs: Near-term targets to accelerate applied R&D. J. Electrochem. Soc. 2020, 167, 084514.

    Article  CAS  Google Scholar 

  48. Jeon, S.; Lee, J.; Rios, G. M.; Kim, H. J.; Lee, S. Y.; Cho, E.; Lim, T. H.; Hyun Jang, J. Effect of ionomer content and relative humidity on polymer electrolyte membrane fuel cell (PEMFC) performance of membrane-electrode assemblies (MEAs) prepared by decal transfer method. Int. J. Hydrogen Energy 2010, 35, 9678–9686.

    Article  CAS  Google Scholar 

  49. Soboleva, T.; Zhao, X. S.; Malek, K.; Xie, Z.; Navessin, T.; Holdcroft, S. On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. ACS Appl. Mater. Interfaces 2010, 2, 375–384.

    Article  CAS  PubMed  Google Scholar 

  50. Soboleva, T.; Malek, K.; Xie, Z.; Navessin, T.; Holdcroft, S. PEMFC catalyst layers: The Role of micropores and mesopores on water sorption and fuel cell activity. ACS Appl. Mater. Interfaces 2011, 3, 1827–1837.

    Article  CAS  PubMed  Google Scholar 

  51. Yarlagadda, V.; Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Koestner, R.; Gu, W. B.; Thompson, L.; Kongkanand, A. Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett. 2011, 3, 618–621.

    Article  Google Scholar 

  52. Pivac, I.; Šimić, B.; Barbir, F. Experimental diagnostics and modeling of inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells. J. Power Sources 2017, 365, 240–248.

    Article  CAS  Google Scholar 

  53. Shao, M. H.; Peles, A.; Shoemaker, K. Electrocatalysis on platinum nanoparticles: Particle size effect on oxygen reduction reaction activity. Nano Lett. 2011, 11, 3714–3719.

    Article  CAS  PubMed  Google Scholar 

  54. Sharma, H. N.; Sharma, V.; Mhadeshwar, A. B.; Ramprasad, R. Why Pt survives but Pd suffers from SOx poisoning. J. Phys. Chem. Lett. 2015, 6, 1140–1148.

    Article  CAS  PubMed  Google Scholar 

  55. Olsson, J. S.; Pham, T. H.; Jannasch, P. Poly(arylene piperidinium) hydroxide ion exchange membranes: Synthesis, alkaline stability, and conductivity. Adv. Funct. Mater. 2011, 28, 1702758.

    Article  Google Scholar 

  56. Li, H. Y.; Cheng, X. J.; Yan, X. H.; Shen, S. Y.; Zhang, J. L. A perspective on influences of cathode material degradation on oxygen transport resistance in low Pt PEMFC. Nano Res. 2023, 16, 377–390.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Beijing Natural Science Foundation (No. Z210016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Li, Ruiyu Li or Zhongbin Zhuang.

Electronic Supplementary Material

12274_2024_6584_MOESM1_ESM.pdf

The difference of the ionomer–catalyst interfaces for poly(aryl piperidinium) hydroxide exchange membrane fuel cells and proton exchange membrane fuel cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wang, X., Zhang, C. et al. The difference of the ionomer–catalyst interfaces for poly(aryl piperidinium) hydroxide exchange membrane fuel cells and proton exchange membrane fuel cells. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6584-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6584-7

Keywords

Navigation