Skip to main content
Log in

Development and Challenges of Electrode Ionomers Used in the Catalyst Layer of Proton-Exchange Membrane Fuel Cells: A Review

  • Review
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

The electrode ionomer plays a crucial role in the catalyst layer (CL) of a proton-exchange membrane fuel cell (PEMFC) and is closely associated with the proton conduction and gas transport properties, structural stability, and water management capability. In this review, we discuss the CL structural characteristics and highlight the latest advancements in ionomer material research. Additionally, we comprehensively introduce the design concepts and exceptional performances of porous electrode ionomers, elaborate on their structural properties and functions within the fuel cell CL, and investigate their effect on the CL microstructure and performance. Finally, we present a prospective evaluation of the developments in the electrode ionomer for fabricating CL, offering valuable insights for designing and synthesizing more efficient electrode ionomer materials. By addressing these facets, this review contributes to a comprehensive understanding of the role and potential of electrode ionomers for enhancing PEMFC performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [6]. Copyright © 2021, Springer Nature. b Chemical structures of prevalent PFSA products. Reproduced with permission from Ref. [7]. Copyright © 2000, Elsevier

Fig. 2
Fig. 3

Reproduced with permission from Ref. [25]. Copyright © 2006, The Electrochemical Society. b 3D imaging of the carbon support (red) and electrode ionomer (blue) components is shown concurrently. Views ranging from 0° to 90° are given [26]. Reproduced with permission from Ref. [26]. Copyright © 2006, The Electrochemical Society. c–e High-angle annular dark-field scanning transmission electron microscopy representative micrograph of sample 1 with composition Nafion/CB = 0.5 w/w. Electron tomography imaging of the Nafion layer deposited on CB in the PEMFC electrodes at d Nafion/CB = 0.5 w/w and e Nafion/CB = 0.2 we blue and gray regions correspond to the Cs+-stained ionomer and CB support, respectively). Reproduced with permission from Ref. [27]. Copyright © 2014, Springer Nature

Fig. 4
Fig. 5

Reproduced with permission from Ref. [61]. Copyright © 2020, Elsevier

Fig. 6
Fig. 7

Reproduced with permission from Ref. [76]. Copyright © 2022, American Association for the Advancement of Science

Fig. 8
Fig. 9

Reproduced with permission from Ref. [94]. Copyright © 2014, The Electrochemical Society

Fig. 10

Reproduced with permission from Ref. [96]. Copyright © 2020, Elsevier. b Schematic of the O2 permeation through ionomer nanofilm [98]. c The contribution of electrode ionomer and water and primary and secondary pores to the gas diffusion resistance in the catalytic layer (CL). Reproduced with permission from Ref. [96]. Copyright © 2020, Elsevier. d Steady-state 1-dimensional model of the cathode CL. Reproduced with permission from Ref. [99]. Copyright © 2011, Elsevier

Fig. 11

Reproduced with permission from Ref. [132]. Copyright © 2016, Springer Nature

Fig. 12

Reproduced with permission from Ref. [133]. Copyright © 2018, American Chemical Society. e Schematic showing that ILs at the catalyst interface can prevent the specific adsorption of sulfonic acid groups on the Pt surface. f ORR polarization curves for Pt(111), Pt(111) + Nafion, and Pt(111) + Nafion + IL in O2-saturated 0.1 mol/L HClO4. Reproduced with permission from Ref. [135]. Copyright © 2020, American Chemical Society

Fig. 13

Reproduced with permission from Ref. [151]. Copyright © 2016, Wiley–VCH. c As-cast and aged 3 mol/L and Nafion PFSA thin film swelling rate constants during saturation-level humidification plotted against the orientation parameter of the same film in a dry condition. The schematics show an inverse relationship between swelling kinetics and increasing domain orientation (parallel to the interfaces). Reproduced with permission from Ref. [153]. Copyright © 2019, American Chemical Society

Fig. 14

Reproduced with permission from Ref. [76]. Copyright © 2022, American Association for the Advancement of Science

Fig. 15

Reproduced with permission from Ref. [156]. Copyright © 2020, American Association for the Advancement of Science. c Different ionomer morphologies are generated using the type of ionization mode originating from the acid–base conditions inside the droplet. Reproduced with permission from Ref. [157]. Copyright © 2020, American Chemical Society

Fig. 16

Reproduced with permission from Ref. [14]. Copyright © 2020, Springer Nature

Fig. 17

Reproduced with permission from Ref. [162]. Copyright © 2018, Elsevier

Similar content being viewed by others

References

  1. Jiao K, Xuan J, Du Q et al (2021) Designing the next generation of proton-exchange membrane fuel cells. Nature 595(7867):361–369

    Article  Google Scholar 

  2. Cullen DA, Neyerlin KC, Ahluwalia RK et al (2021) New roads and challenges for fuel cells in heavy-duty transportation. Nat Energy 6(5):462–474

    Article  Google Scholar 

  3. Moriarty P, Honnery D (2019) Global renewable energy resources and use in 2050. Elsevier, Managing Global Warming. Amsterdam, pp 221–235

    Google Scholar 

  4. Gasteiger HA, Marković NM (2009) Just a dream or future reality? Science 324(5923):48–49

    Article  Google Scholar 

  5. Editor (2021) Moving forward with fuel cells. Nat Energy 6(5):451

  6. Jinnouchi R, Kudo K, Kodama K et al (2021) The role of oxygen-permeable ionomer for polymer electrolyte fuel cells. Nat Commun 12:4956

    Article  Google Scholar 

  7. Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25(10):1463–1502

    Article  Google Scholar 

  8. Liang X, Wu L, Xu T (2018) Role of ionomer in membrane electrode assembly for proton exchange membrane fuel cells. Sci Sin-Chim 48(9):1040–1057

    Article  Google Scholar 

  9. Fan J, Chen M, Zhao Z et al (2021) Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nat Energy 6(5):475–486

    Article  Google Scholar 

  10. Tian X, Zhao X, Su YQ et al (2019) Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366(6467):850–856

    Article  Google Scholar 

  11. Chong L, Wen J, Kubal J et al (2018) Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 362(6420):1276–1281

    Article  Google Scholar 

  12. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401):43–51

    Article  Google Scholar 

  13. Xia BY, Ng WT, Wu HB et al (2012) Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells. Angew Chem 124(29):7325–7328

    Article  Google Scholar 

  14. Ott S, Orfanidi A, Schmies H et al (2020) Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat Mater 19(1):77–85

    Article  Google Scholar 

  15. Yarlagadda V, Carpenter MK, Moylan TE et al (2018) Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett 3(3):618–621

    Article  Google Scholar 

  16. Poojary S, Islam MN, Shrivastava UN et al (2020) Transport and electrochemical interface properties of ionomers in low-Pt loading catalyst layers: effect of ionomer equivalent weight and relative humidity. Molecules 25(15):3387

    Article  Google Scholar 

  17. Karan K (2017) PEFC catalyst layer: recent advances in materials, microstructural characterization, and modeling. Curr Opin Electrochem 5(1):27–35

    Article  Google Scholar 

  18. Aitbekova A, Zhou C, Stone ML et al (2022) Templated encapsulation of platinum-based catalysts promotes high-temperature stability to 1, 100 ℃. Nat Mater 21(11):1290–1297

    Article  Google Scholar 

  19. Zaman S, Su YQ, Dong CL et al (2022) Scalable molten salt synthesis of platinum alloys planted in metal-nitrogen-graphene for efficient oxygen reduction. Angew Chem Int Ed 61(6):e202115835

    Article  Google Scholar 

  20. Tian X, Lu XF, Xia BY et al (2020) Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 4(1):45–68

    Article  Google Scholar 

  21. Kobayashi A, Fujii T, Harada C et al (2021) Effect of Pt and ionomer distribution on polymer electrolyte fuel cell performance and durability. ACS Appl Energy Mater 4(3):2307–2317

    Article  Google Scholar 

  22. Uchida M, Park YC, Kakinuma K et al (2013) Effect of the state of distribution of supported Pt nanoparticles on effective Pt utilization in polymer electrolyte fuel cells. Phys Chem Chem Phys 15(27):11236

    Article  Google Scholar 

  23. Park YC, Tokiwa H, Kakinuma K et al (2016) Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells. J Power Sources 315:179–191

    Article  Google Scholar 

  24. More K, Reeves S (2005) TEM specimen preparation of partially-embedded electrodes from proton exchange membrane fuel cell membrane electrode assemblies. Microsc Microanal 11(S02):2104–2105

    Article  Google Scholar 

  25. More K, Borup R, Reeves K (2006) Identifying contributing degradation phenomena in PEM fuel cell membrane electride assemblies via electron microscopy. ECS Trans 3(1):717–733

    Article  Google Scholar 

  26. Berejnov V, Susac D, Stumper J et al (2013) 3D chemical mapping of PEM fuel cell cathodes by scanning transmission soft X-ray SpectroTomography. ECS Trans 50(2):361–368

    Article  Google Scholar 

  27. Lopez-Haro M, Guétaz L, Printemps T et al (2014) Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nat Commun 5:5229

    Article  Google Scholar 

  28. Tang M, Zhang S, Chen S (2022) Pt utilization in proton exchange membrane fuel cells: structure impacting factors and mechanistic insights. Chem Soc Rev 51(4):1529–1546

    Article  Google Scholar 

  29. Kim SM, Kang YS, Ahn C et al (2016) Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell. J Power Sources 317:19–24

    Article  Google Scholar 

  30. Ning F, Bai C, Qin J et al (2020) Great improvement in the performance and lifetime of a fuel cell using a highly dense, well-ordered, and cone-shaped Nafion array. J Mater Chem A 8(11):5489–5500

    Article  Google Scholar 

  31. Tian ZQ, Lim SH, Poh CK et al (2011) A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells. Adv Energy Mater 1(6):1205–1214

    Article  Google Scholar 

  32. Zhang C, Yu H, Fu L et al (2015) An oriented ultrathin catalyst layer derived from high conductive TiO2 nanotube for polymer electrolyte membrane fuel cell. Electrochim Acta 153:361–369

    Article  Google Scholar 

  33. Roshandel R, Ahmadi F (2013) Effects of catalyst loading gradient in catalyst layers on performance of polymer electrolyte membrane fuel cells. Renew Energy 50:921–931

    Article  Google Scholar 

  34. Wang Y, Liu T, Sun H et al (2020) Investigation of dry ionomer volume fraction in cathode catalyst layer under different relative humilities and nonuniform ionomer-gradient distributions for PEM fuel cells. Electrochim Acta 353:136491

    Article  Google Scholar 

  35. Deng R, Xia Z, Sun R et al (2020) Nanostructured ultrathin catalyst layer with ordered platinum nanotube arrays for polymer electrolyte membrane fuel cells. J Energy Chem 43:33–39

    Article  Google Scholar 

  36. Ahn CY, Park JE, Kim S et al (2021) Differences in the electrochemical performance of Pt-based catalysts used for polymer electrolyte membrane fuel cells in liquid half- and full-cells. Chem Rev 121(24):15075–15140

    Article  Google Scholar 

  37. Zhang S, Yuan X, Wang H et al (2009) A review of accelerated stress tests of MEA durability in PEM fuel cells. Int J Hydrog Energy 34(1):388–404

    Article  Google Scholar 

  38. Danyliv O, Gueneau C, Iojoiu C et al (2016) Polyaromatic ionomers with a highly hydrophobic backbone and perfluorosulfonic acids for PEMFC. Electrochim Acta 214:182–191

    Article  Google Scholar 

  39. Lee KS, Jeong MH, Lee JS et al (2010) Optimizing end-group cross-linkable polymer electrolytes for fuel cell applications. J Membr Sci 352(1–2):180–188

    Article  Google Scholar 

  40. Takamuku S, Jannasch P (2012) Properties and degradation of hydrocarbon fuel cell membranes: a comparative study of sulfonated poly(arylene ether sulfone)s with different positions of the acid groups. Polym Chem 3(5):1202

    Article  Google Scholar 

  41. Mukherjee R, Mandal AK, Banerjee S (2020) Sulfonated poly(arylene ether sulfone) functionalized polysilsesquioxane hybrid membranes with enhanced proton conductivity. e-Polymers 20(1):430–442

  42. Chen R, Li G (2016) New sulfonated poly(arylene ether sulfone) copolymers containing phenyl side chains as proton exchange membranes. New J Chem 40(4):3755–3762

    Article  Google Scholar 

  43. He C, Guiver MD, Mighri F et al (2013) Surface orientation of hydrophilic groups in sulfonated poly(ether ether ketone) membranes. J Colloid Interface Sci 409:193–203

    Article  Google Scholar 

  44. Carbone A, Pedicini R, Portale G et al (2006) Sulphonated poly(ether ether ketone) membranes for fuel cell application: thermal and structural characterisation. J Power Sources 163(1):18–26

    Article  Google Scholar 

  45. Kaliaguine S, Mikhailenko SD, Wang KP et al (2003) Properties of SPEEK based PEMs for fuel cell application. Catal Today 82(1–4):213–222

    Article  Google Scholar 

  46. Wang Y, Chung TS, Gruender M (2012) Sulfonated polybenzimidazole membranes for pervaporation dehydration of acetic acid. J Membr Sci 415–416:486–495

    Article  Google Scholar 

  47. Escorihuela J, Olvera-Mancilla J, Alexandrova L et al (2020) Recent progress in the development of composite membranes based on polybenzimidazole for high temperature proton exchange membrane (PEM) fuel cell applications. Polymers 12(9):1861

  48. Maity S, Jana T (2013) Soluble polybenzimidazoles for PEM: synthesized from efficient, inexpensive, readily accessible alternative tetraamine monomer. Macromolecules 46(17):6814–6823

    Article  Google Scholar 

  49. Pingitore AT, Huang F, Qian G et al (2019) Durable high polymer content m/p-polybenzimidazole membranes for extended lifetime electrochemical devices. ACS Appl Energy Mater 2(3):1720–1726

    Article  Google Scholar 

  50. Shiino K, Otomo T, Yamada T et al (2020) Structural investigation of sulfonated polyphenylene ionomers for the design of better performing proton-conductive membranes. ACS Appl Polym Mater 2(12):5558–5565

    Article  Google Scholar 

  51. Miyake J, Taki R, Mochizuki T et al (2017) Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells. Sci Adv 3(10):eaao0476

  52. Donnadio A, Casciola M, Di Vona ML et al (2012) Conductivity and hydration of sulfonated polyethersulfone in the range 70–120 °C: effect of temperature and relative humidity cycling. J Power Sources 205:145–150

    Article  Google Scholar 

  53. Miyatake K, Furuya H, Tanaka M et al (2012) Durability of sulfonated polyimide membrane in humidity cycling for fuel cell applications. J Power Sources 204:74–78

    Article  Google Scholar 

  54. Yuan Q, Liu P, Baker GL (2015) Sulfonated polyimide and PVDF based blend proton exchange membranes for fuel cell applications. J Mater Chem A 3(7):3847–3853

    Article  Google Scholar 

  55. Zhang Z, Xu T (2014) Proton-conductive polyimides consisting of naphthalenediimide and sulfonated units alternately segmented by long aliphatic spacers. J Mater Chem A 2(30):11583

    Article  Google Scholar 

  56. Kopitzke RW, Linkous CA, Anderson HR et al (2000) Conductivity and water uptake of aromatic-based proton exchange membrane electrolytes. J Electrochem Soc 147(5):1677

    Article  Google Scholar 

  57. Kim E, Weck PF, Balakrishnan N et al (2008) Nanoscale building blocks for the development of novel proton exchange membrane fuel cells. J Phys Chem B 112(11):3283–3286

    Article  Google Scholar 

  58. Long Z, Miyake J, Miyatake K (2020) Proton exchange membranes containing densely sulfonated quinquephenylene groups for high performance and durable fuel cells. J Mater Chem A 8(24):12134–12140

    Article  Google Scholar 

  59. Zhang H, Stanis RJ, Song Y et al (2017) Fuel cell performance of pendent methylphenyl sulfonated poly(ether ether ketone ketone)S. J Power Sources 368:30–37

    Article  Google Scholar 

  60. Lim Y, Lee S, Jang H et al (2015) Synthesis and characterization of pendant propane sulfonic acid on phenylene based copolymers by superacid-catalyzed reaction. Renew Energy 79:85–90

    Article  Google Scholar 

  61. Chae JE, Yoo SJ, Kim JY et al (2020) Hydrocarbon-based electrode ionomer for proton exchange membrane fuel cells. Int J Hydrog Energy 45(57):32856–32864

    Article  Google Scholar 

  62. Katzenberg A, Chowdhury A, Fang M et al (2020) Highly permeable perfluorinated sulfonic acid ionomers for improved electrochemical devices: insights into structure–property relationships. J Am Chem Soc 142(8):3742–3752

    Article  Google Scholar 

  63. Fang S, Liu G, Li M et al (2023) Tailoring ionomer chemistry for improved oxygen transport in the cathode catalyst layer of proton exchange membrane fuel cells. ACS Appl Energy Mater 6(6):3590–3598

    Article  Google Scholar 

  64. MacAuley N, Lousenberg RD, Spinetta M et al (2022) Highly durable fluorinated high oxygen permeability ionomers for proton exchange membrane fuel cells. Adv Energy Mater 12(45):2201063

    Article  Google Scholar 

  65. Shimizu R, Park YC, Kakinuma K et al (2018) Effects of both oxygen permeability and ion exchange capacity for cathode ionomers on the performance and durability of polymer electrolyte fuel cells. J Electrochem Soc 165(6):F3063–F3071

    Article  Google Scholar 

  66. Cheng X, You J, Shen S et al (2022) An ingenious design of nanoporous nafion film for enhancing the local oxygen transport in cathode catalyst layers of PEMFCs. Chem Eng J 439:135387

    Article  Google Scholar 

  67. Diercks CS, Yaghi OM (2017) The atom, the molecule, and the covalent organic framework. Science 355(6328):eaal1585

  68. Yang Y, He X, Zhang P et al (2020) Combined intrinsic extrinsic proton conduction in robust covalent organic frameworks for hydrogen fuel cell applications. Angew Chem Int Ed 59(9):3678–3684

    Article  Google Scholar 

  69. Zhang Y, Xing C, Mu Z et al (2023) Harnessing self-repairing and crystallization processes for effective enzyme encapsulation in covalent organic frameworks. J Am Chem Soc 145(24):13469–13475

    Article  Google Scholar 

  70. Huang X, Sun C, Feng X (2020) Crystallinity and stability of covalent organic frameworks. Sci China Chem 63(10):1367–1390

    Article  Google Scholar 

  71. Meng Z, Stolz RM, Mirica KA (2019) Two-dimensional chemiresistive covalent organic framework with high intrinsic conductivity. J Am Chem Soc 141(30):11929–11937

    Article  Google Scholar 

  72. Chandra S, Kundu T, Kandambeth S et al (2014) Phosphoric acid loaded azo (–N═N–) based covalent organic framework for proton conduction. J Am Chem Soc 136(18):6570–6573

    Article  Google Scholar 

  73. Xu H, Tao S, Jiang D (2016) Proton conduction in crystalline and porous covalent organic frameworks. Nature Mater 15(7):722–726

    Article  Google Scholar 

  74. Ye Y, Zhang L, Peng Q et al (2015) High anhydrous proton conductivity of imidazole-loaded mesoporous polyimides over a wide range from subzero to moderate temperature. J Am Chem Soc 137(2):913–918

    Article  Google Scholar 

  75. Li S, Liu Y, Li L et al (2020) Enhanced proton conductivity of imidazole-doped thiophene-based covalent organic frameworks via subtle hydrogen bonding modulation. ACS Appl Mater Interfaces 12(20):22910–22916

    Article  Google Scholar 

  76. Zhang Q, Dong S, Shao P et al (2022) Covalent organic framework–based porous ionomers for high-performance fuel cells. Science 378(6616):181–186

    Article  Google Scholar 

  77. Ma T, Lutkenhaus JL (2022) Hydrogen power gets a boost. Science 378(6616):138–139

    Article  Google Scholar 

  78. Fan L, Deng H, Zhang Y et al (2023) Towards ultralow platinum loading proton exchange membrane fuel cells. Energy Environ Sci 16(4):1466–1479

    Article  Google Scholar 

  79. Pan S, Wen Q, Dan X et al (2023) Enhanced triple-phase interface in PEMFC by proton conductor absorption on the Pt catalyst. ACS Appl Energy Mater 6(2):763–772

    Article  Google Scholar 

  80. Gu CC, Xu FH, Zhu WK et al (2023) Recent advances on covalent organic frameworks (COFs) as photocatalysts: different strategies for enhancing hydrogen generation. Chem Commun 59(48):7302–7320

    Article  Google Scholar 

  81. Cheng CH, Malek K, Sui PC et al (2010) Effect of Pt nano-particle size on the microstructure of PEM fuel cell catalyst layers: insights from molecular dynamics simulations. Electrochim Acta 55(5):1588–1597

    Article  Google Scholar 

  82. Navessin T, Eikerling M, Wang Q et al (2005) Influence of membrane ion exchange capacity on the catalyst layer performance in an operating PEM fuel cell. J Electrochem Soc 152(4):A796

    Article  Google Scholar 

  83. Schmidt-Rohr K, Chen Q (2008) Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nature Mater 7(1):75–83

    Article  Google Scholar 

  84. Cui S, Liu J, Selvan ME et al (2007) A molecular dynamics study of a nafion polyelectrolyte membrane and the aqueous phase structure for proton transport. J Phys Chem B 111(9):2208–2218

    Article  Google Scholar 

  85. Hogarth WHJ, Diniz da Costa JC, Max Lu GQ (2005) Solid acid membranes for high temperature (140 °C) proton exchange membrane fuel cells. J Power Sources 142(1–2):223–237

    Article  Google Scholar 

  86. Kim DJ, Jo MJ, Nam SY (2015) A review of polymer–nanocomposite electrolyte membranes for fuel cell application. J Ind Eng Chem 21:36–52

    Article  Google Scholar 

  87. Tai CC, Chen CL, Liu CW (2017) Computer simulation to investigate proton transport and conductivity in perfluorosulfonate ionomeric membrane. Int J Hydrog Energy 42(7):3981–3986

    Article  Google Scholar 

  88. Choe YK, Tsuchida E, Ikeshoji T et al (2009) Nature of proton dynamics in a polymer electrolyte membrane, nafion: a first-principles molecular dynamics study. Phys Chem Chem Phys 11(20):3892

    Article  Google Scholar 

  89. Paul DK, Fraser A, Karan K (2011) Towards the understanding of proton conduction mechanism in PEMFC catalyst layer: conductivity of adsorbed Nafion films. Electrochem Commun 13(8):774–777

    Article  Google Scholar 

  90. Shen S, Han A, Yan X et al (2019) Influence of equivalent weight of ionomer on proton conduction behavior in fuel cell catalyst layers. J Electrochem Soc 166(12):F724–F728

    Article  Google Scholar 

  91. Nagao Y (2013) Highly oriented sulfonic acid groups in a nafion thin film on Si substrate. J Phys Chem C 117(7):3294–3297

    Article  Google Scholar 

  92. Siroma Z, Kakitsubo R, Fujiwara N et al (2009) Depression of proton conductivity in recast Nafion® film measured on flat substrate. J Power Sources 189(2):994–998

    Article  Google Scholar 

  93. Paul DK, Karan K, Docoslis A et al (2013) Characteristics of self-assembled ultrathin nafion films. Macromolecules 46(9):3461–3475

    Article  Google Scholar 

  94. Paul DK, McCreery R, Karan K (2014) Proton transport property in supported nafion nanothin films by electrochemical impedance spectroscopy. J Electrochem Soc 161(14):F1395–F1402

    Article  Google Scholar 

  95. Péron J, Nedellec Y, Jones DJ et al (2008) The effect of dissolution, migration and precipitation of platinum in Nafion®-based membrane electrode assemblies during fuel cell operation at high potential. J Power Sources 185(2):1209–1217

    Article  Google Scholar 

  96. Salari S, Tam M, McCague C et al (2020) The ex-situ and in situ gas diffusivities of polymer electrolyte membrane fuel cell catalyst layer and contribution of primary pores, secondary pores, ionomer and water to the total oxygen diffusion resistance. J Power Sources 449:227479

    Article  Google Scholar 

  97. Beuscher U (2006) Experimental method to determine the mass transport resistance of a polymer electrolyte fuel cell. J Electrochem Soc 153(9):A1788

    Article  Google Scholar 

  98. Shen S, Cheng X, Wang C et al (2017) Exploration of significant influences of the operating conditions on the local O2 transport in proton exchange membrane fuel cells (PEMFCs). Phys Chem Chem Phys 19(38):26221–26229

    Article  Google Scholar 

  99. Ohma A, Mashio T, Sato K et al (2011) Analysis of proton exchange membrane fuel cell catalyst layers for reduction of platinum loading at Nissan. Electrochim Acta 56(28):10832–10841

    Article  Google Scholar 

  100. Kongkanand A, Mathias MF (2016) The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J Phys Chem Lett 7(7):1127–1137

    Article  Google Scholar 

  101. Greszler TA, Caulk D, Sinha P (2012) The impact of platinum loading on oxygen transport resistance. J Electrochem Soc 159(12):F831–F840

    Article  Google Scholar 

  102. Sakai K, Sato K, Mashio T et al (2009) Analysis of reactant gas transport in catalyst layers; effect of Pt-loadings. ECS Trans 25(1):1193–1201

    Article  Google Scholar 

  103. Ono Y, Mashio T, Takaichi S et al (2010) The analysis of performance loss with low platinum loaded cathode catalyst layers. ECS Trans 28(27):69–78

    Article  Google Scholar 

  104. Nonoyama N, Okazaki S, Weber AZ et al (2011) Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells. J Electrochem Soc 158(4):B416

    Article  Google Scholar 

  105. Yoon W, Weber AZ (2011) Modeling low-platinum-loading effects in fuel-cell catalyst layers. J Electrochem Soc 158(8):B1007

    Article  Google Scholar 

  106. Kudo K, Jinnouchi R, Morimoto Y (2016) Humidity and temperature dependences of oxygen transport resistance of nafion thin film on platinum electrode. Electrochim Acta 209:682–690

    Article  Google Scholar 

  107. Yakovlev YV, Lobko YV, Vorokhta M et al (2021) Ionomer content effect on charge and gas transport in the cathode catalyst layer of proton-exchange membrane fuel cells. J Power Sources 490:229531

    Article  Google Scholar 

  108. Guan S, Zhou F, Tan J et al (2020) Influence of pore size optimization in catalyst layer on the mechanism of oxygen transport resistance in PEMFCs. Prog Nat Sci Mater Int 30(6):839–845

    Article  Google Scholar 

  109. Wang S, Li X, Wan Z et al (2018) Effect of hydrophobic additive on oxygen transport in catalyst layer of proton exchange membrane fuel cells. J Power Sources 379:338–343

    Article  Google Scholar 

  110. Kudo K, Suzuki T, Morimoto Y (2010) Analysis of oxygen dissolution rate from gas phase into nafion surface and development of an agglomerate model. ECS Trans 33(1):1495–1502

    Article  Google Scholar 

  111. Kudo K, Morimoto Y (2013) Analysis of oxygen transport resistance of nafion thin film on Pt electrode. ECS Trans 50(2):1487–1494

    Article  Google Scholar 

  112. Jinnouchi R, Kudo K, Kitano N et al (2016) Molecular dynamics simulations on O2 permeation through nafion ionomer on platinum surface. Electrochim Acta 188:767–776

    Article  Google Scholar 

  113. Sakai K, Tokumasu T (2011) Molecular dynamics study of oxygen permeation in PFSA ionomer on the Pt catalyst surface. ECS Trans 41(1):2105–2113

    Article  Google Scholar 

  114. Kurihara Y, Mabuchi T, Tokumasu T (2014) Molecular simulation of oxygen permeation through ionomer in catalyst layer. ECS Trans 64(3):559–565

    Article  Google Scholar 

  115. Sugaya Y, Tokumasu T (2013) Molecular dynamics study of oxygen permeation of ionomer of hydrocarbon. ECS Trans 58(1):1165–1174

    Article  Google Scholar 

  116. Tian ZQ, Wang XL, Zhang HM et al (2006) Microwave-assisted synthesis of PTFE/C nanocomposite for polymer electrolyte fuel cells. Electrochem Commun 8(7):1158–1162

    Article  Google Scholar 

  117. Fischer A, Jindra J, Wendt H (1998) Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells. J Appl Electrochem 28(3):277–282

    Article  Google Scholar 

  118. Gu K, Kim EJ, Sharma SK et al (2021) Mesoporous carbon aerogel with tunable porosity as the catalyst support for enhanced proton-exchange membrane fuel cell performance. Mater Today Energy 19:100560

    Article  Google Scholar 

  119. Cho YH, Jung N, Kang YS et al (2012) Improved mass transfer using a pore former in cathode catalyst layer in the direct methanol fuel cell. Int J Hydrog Energy 37(16):11969–11974

    Article  Google Scholar 

  120. Zhao J, He X, Wang L et al (2007) Addition of NH4HCO3 as pore-former in membrane electrode assembly for PEMFC. Int J Hydrog Energy 32(3):380–384

    Article  Google Scholar 

  121. Şengül E, Erkan S, Eroğlu İ et al (2008) Effect of gas diffusion layer characteristics and addition of pore-forming agents on the performance of polymer electrolyte membrane fuel cells. Chem Eng Commun 196(1–2):161–170

    Article  Google Scholar 

  122. Ye G, Wang H, Zhou X et al (2019) Optimizing catalyst pore network structure in the presence of deactivation by coking. AlChE J 65(10):e16687

    Article  Google Scholar 

  123. Yamada K, Hommura S, Shimohira T (2013) Effect of high oxygen permeable ionomers on MEA performance for PEFC. ECS Trans 50(2):1495–1501

    Article  Google Scholar 

  124. Shinozaki K, Morimoto Y, Pivovar BS et al (2016) Suppression of oxygen reduction reaction activity on Pt-based electrocatalysts from ionomer incorporation. J Power Sources 325:745–751

    Article  Google Scholar 

  125. Speder J, Zana A, Arenz M (2016) The colloidal tool-box approach for fuel cell catalysts: systematic study of perfluorosulfonate-ionomer impregnation and Pt loading. Catal Today 262:82–89

    Article  Google Scholar 

  126. Andersen SM (2016) Nano carbon supported platinum catalyst interaction behavior with perfluorosulfonic acid ionomer and their interface structures. Appl Catal B Environ 181:146–155

    Article  Google Scholar 

  127. Subbaraman R, Strmcnik D, Stamenkovic V et al (2010) Three phase interfaces at electrified metal–solid electrolyte systems 1. study of the Pt(hkl)–nafion interface. J Phys Chem C 114(18):8414–8422

  128. Subbaraman R, Strmcnik D, Paulikas AP et al (2010) Oxygen reduction reaction at three-phase interfaces. ChemPhysChem 11(13):2825–2833

    Article  Google Scholar 

  129. Tymoczko J, Calle-Vallejo F, Colic V et al (2014) Oxygen reduction at a Cu-modified Pt(111) model electrocatalyst in contact with nafion polymer. ACS Catal 4(10):3772–3778

    Article  Google Scholar 

  130. Kunimatsu K, Yoda T, Tryk DA et al (2010) In situ ATR-FTIR study of oxygenreduction at the Pt/Nafion interface. Phys Chem Chem Phys 12(3):621–629

    Article  Google Scholar 

  131. Ayato Y, Kunimatsu K, Osawa M et al (2006) Study of Pt electrode/nafion ionomer interface in HClO4 by in situ surface-enhanced FTIR spectroscopy. J Electrochem Soc 153(2):A203

    Article  Google Scholar 

  132. Rad AS (2016) DFT study of hydrogen fluoride and sulfur trioxide interactions on the surface of Pt-decorated graphene. J Theor Appl Phys 10(4):307–313

    Article  Google Scholar 

  133. Kodama K, Motobayashi K, Shinohara A et al (2018) Effect of the side-chain structure of perfluoro-sulfonic acid ionomers on the oxygen reduction reaction on the surface of Pt. ACS Catal 8(1):694–700

    Article  Google Scholar 

  134. Kodama K, Shinohara A, Hasegawa N et al (2014) Catalyst poisoning property of sulfonimide acid ionomer on Pt (111) surface. J Electrochem Soc 161(5):F649–F652

    Article  Google Scholar 

  135. Li Y, Intikhab S, Malkani A et al (2020) Ionic liquid additives for the mitigation of nafion specific adsorption on platinum. ACS Catal 10(14):7691–7698

    Article  Google Scholar 

  136. Takeshita T, Kamitaka Y, Shinozaki K et al (2020) Evaluation of ionomer coverage on Pt catalysts in polymer electrolyte membrane fuel cells by CO stripping voltammetry and its effect on oxygen reduction reaction activity. J Electroanal Chem 871:114250

    Article  Google Scholar 

  137. Shen J, Xu L, Chang H et al (2020) Partial flooding and its effect on the performance of a proton exchange membrane fuel cell. Energy Convers Manag 207:112537

    Article  Google Scholar 

  138. Shojaeefard MH, Molaeimanesh GR, Moqaddari MR (2019) Effects of compression on the removal of water droplet from GDLs of PEM fuel cells. Fuel Cells 19(6):675–684

    Article  Google Scholar 

  139. Tardy E, Courtois F, Chandesris M et al (2019) Investigation of liquid water heterogeneities in large area PEM fuel cells using a pseudo-3D multiphysics model. Int J Heat Mass Transf 145:118720

    Article  Google Scholar 

  140. Ijaodola OS, El-Hassan Z, Ogungbemi E et al (2019) Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC). Energy 179:246–267

    Article  Google Scholar 

  141. Mulyazmi DWRW, Majlan EH et al (2013) Water balance for the design of a PEM fuel cell system. Int J Hydrog Energy 38(22):9409–9420

    Article  Google Scholar 

  142. Dai W, Wang H, Yuan XZ et al (2009) A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells. Int J Hydrog Energy 34(23):9461–9478

    Article  Google Scholar 

  143. Karthikeyan M, Karthikeyan P, Muthukumar M et al (2020) Adoption of novel porous inserts in the flow channel of pem fuel cell for the mitigation of cathodic flooding. Int J Hydrog Energy 45(13):7863–7872

    Article  Google Scholar 

  144. Jang S, Park HY, Jung J et al (2019) Enhanced water management of three-dimensional graphene-Ni foam with patterned wettability in a polymer electrolyte membrane fuel cell. ACS Sustain Chem Eng 7(18):15487–15494

    Article  Google Scholar 

  145. Liu HC, Yang WM, Tan J et al (2019) A fin-shaped flow channel enhances water removal performance in a proton exchange membrane fuel cell. Fuel Cells 19(1):51–59

    Article  Google Scholar 

  146. Moçotéguy P, Ludwig B, Beretta D et al (2020) Study of the impact of water management on the performance of PEMFC commercial stacks by impedance spectroscopy. Int J Hydrog Energy 45(33):16724–16737

    Article  Google Scholar 

  147. Mohseninia A, Kartouzian D, Schlumberger R et al (2020) Enhanced water management in PEMFCs: perforated catalyst layer and microporous layers. Chemsuschem 13(11):2931–2934

    Article  Google Scholar 

  148. Yin Y, Li R, Bai F et al (2019) Ionomer migration within PEMFC catalyst layers induced by humidity changes. Electrochem Commun 109:106590

    Article  Google Scholar 

  149. Modestino MA, Kusoglu A, Hexemer A et al (2012) Controlling nafion structure and properties via wetting interactions. Macromolecules 45(11):4681–4688

    Article  Google Scholar 

  150. Modestino MA, Paul DK, Dishari S et al (2013) Self-assembly and transport limitations in confined nafion films. Macromolecules 46(3):867–873

    Article  Google Scholar 

  151. Kusoglu A, Dursch TJ, Weber AZ (2016) Nanostructure/swelling relationships of bulk and thin-film PFSA ionomers. Adv Funct Mater 26(27):4961–4975

    Article  Google Scholar 

  152. Shrivastava UN, Fritzsche H, Karan K (2018) Interfacial and bulk water in ultrathin films of nafion, 3M PFSA, and 3M PFIA ionomers on a polycrystalline platinum surface. Macromolecules 51(23):9839–9849

    Article  Google Scholar 

  153. Tesfaye M, Kushner DI, Kusoglu A (2019) Interplay between swelling kinetics and nanostructure in perfluorosulfonic acid thin-films: role of hygrothermal aging. ACS Appl Polym Mater 1(4):631–635

    Article  Google Scholar 

  154. Ren H, Teng Y, Meng X et al (2021) Ionomer network of catalyst layers for proton exchange membrane fuel cell. J Power Sources 506:230186

    Article  Google Scholar 

  155. Park YC, Kakinuma K, Uchida H et al (2015) Effects of short-side-chain perfluorosulfonic acid ionomers as binders on the performance of low Pt loading fuel cell cathodes. J Power Sources 275:384–391

    Article  Google Scholar 

  156. Ahn CY, Ahn J, Kang SY et al (2020) Enhancement of service life of polymer electrolyte fuel cells through application of nanodispersed ionomer. Sci Adv 6(5):eaaw0870

  157. Cho S, Tamoto K, Uchida M (2020) Effect of an electrospray-generated ionomer morphology on polymer electrolyte fuel cell performance. Energy Fuels 34(11):14853–14863

    Article  Google Scholar 

  158. Orfanidi A, Madkikar P, El-Sayed HA et al (2017) The key to high performance low Pt loaded electrodes. J Electrochem Soc 164(4):F418–F426

    Article  Google Scholar 

  159. Passalacqua E, Lufrano F, Squadrito G et al (2001) Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance. Electrochim Acta 46(6):799–805

    Article  Google Scholar 

  160. Andersen SM, Grahl-Madsen L (2016) Interface contribution to the electrode performance of proton exchange membrane fuel cells—impact of the ionomer. Int J Hydrog Energy 41(3):1892–1901

    Article  Google Scholar 

  161. Alink R, Singh R, Schneider P et al (2020) Full parametric study of the influence of ionomer content, catalyst loading and catalyst type on oxygen and ion transport in PEM fuel cell catalyst layers. Molecules 25(7):1523

    Article  Google Scholar 

  162. Ishikawa H, Sugawara Y, Inoue G et al (2018) Effects of Pt and ionomer ratios on the structure of catalyst layer: a theoretical model for polymer electrolyte fuel cells. J Power Sources 374:196–204

    Article  Google Scholar 

  163. Ohira A, Kuroda S, Mohamed HFM et al (2013) Effect of interface on surface morphology and proton conduction of polymer electrolyte thin films. Phys Chem Chem Phys 15(27):11494

    Article  Google Scholar 

  164. Shin SJ, Lee JK, Ha HY et al (2002) Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells. J Power Sources 106(1–2):146–152

    Article  Google Scholar 

  165. Jeon S, Lee J, Rios GM et al (2010) Effect of ionomer content and relative humidity on polymer electrolyte membrane fuel cell (PEMFC) performance of membrane-electrode assemblies (MEAs) prepared by decal transfer method. Int J Hydrog Energy 35(18):9678–9686

    Article  Google Scholar 

  166. Huang J, Li Z, Zhang J (2017) Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: the blessing and curse of ionomer. Front Energy 11(3):334–364

    Article  Google Scholar 

  167. Hirano S, Kim J, Srinivasan S (1997) High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes. Electrochim Acta 42(10):1587–1593

    Article  Google Scholar 

  168. Park EJ, Maurya S, Lee AS et al (2019) How does a small structural change of anode ionomer make a big difference in alkaline membrane fuel cell performance? J Mater Chem A 7(43):25040–25046

    Article  Google Scholar 

  169. Li D, Park EJ, Zhu W et al (2020) Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nat Energy 5(5):378–385

    Article  Google Scholar 

  170. Nykaza JR, Li Y, Elabd YA et al (2016) Effect of alkaline exchange polymerized ionic liquid block copolymer ionomers on the kinetics of fuel cell half reactions. J Electroanal Chem 783:182–187

    Article  Google Scholar 

  171. Maurya S, Fujimoto CH, Hibbs MR et al (2018) Toward improved alkaline membrane fuel cell performance using quaternized aryl-ether free polyaromatics. Chem Mater 30(7):2188–2192

    Article  Google Scholar 

  172. Nallayagari AR, Sgreccia E, Pasquini L et al (2022) Impact of anion exchange ionomers on the electrocatalytic performance for the oxygen reduction reaction of B-N co-doped carbon quantum dots on activated carbon. ACS Appl Mater Interfaces 14(41):46537–46547

    Article  Google Scholar 

  173. Chen N, Wang HH, Kim SP et al (2021) Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells. Nat Commun 12:2367

    Article  Google Scholar 

  174. Chen N, Chen N, Hu C et al (2021) Poly(alkyl-terphenyl piperidinium) ionomers and membranes with an outstanding alkaline-membrane fuel-cell performance of 2.58 W cm-2. Angew Chem Int Ed Engl 60(14):7710–7718

  175. Zhao Y, Lv B, Song W et al (2023) Influence of the PBI structure on PBI/CsH5(PO4)2 membrane performance for HT-PEMFC application. J Membr Sci 674:121531

    Article  Google Scholar 

  176. Rosli RE, Sulong AB, Daud WRW et al (2017) A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int J Hydrog Energy 42(14):9293–9314

    Article  Google Scholar 

  177. Haider R, Wen Y, Ma ZF et al (2021) High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies. Chem Soc Rev 50(2):1138–1187

    Article  Google Scholar 

  178. Ergün D (2009) High temperature proton exchange membrane fuel cells. Middle East Technical University, Ankara, Turkey

    Google Scholar 

  179. Bose S, Kuila T, Nguyen TXH et al (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 36(6):813–843

    Article  Google Scholar 

  180. Qu E, Hao X, Xiao M et al (2022) Proton exchange membranes for high temperature proton exchange membrane fuel cells: challenges and perspectives. J Power Sources 533:231386

    Article  Google Scholar 

  181. Atanasov V, Lee AS, Park EJ et al (2021) Synergistically integrated phosphonated poly(pentafluorostyrene) for fuel cells. Nat Mater 20(3):370–377

    Article  Google Scholar 

  182. Kim JH, Kim HJ, Lim TH et al (2007) Dependence of the performance of a high-temperature polymer electrolyte fuel cell on phosphoric acid-doped polybenzimidazole ionomer content in cathode catalyst layer. J Power Sources 170(2):275–280

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21625102, 21971017, and 22102008), National Key Research and Development Program of China (No. 2020YFB1506300), Postdoctoral Fund of China (Nos. 2020T130055 and 2020M670143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wang, B. Development and Challenges of Electrode Ionomers Used in the Catalyst Layer of Proton-Exchange Membrane Fuel Cells: A Review. Trans. Tianjin Univ. 29, 360–386 (2023). https://doi.org/10.1007/s12209-023-00371-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-023-00371-0

Keywords

Navigation