Skip to main content
Log in

High-strength, stretchable, and NIR-induced rapid self-healing polyurethane nanocomposites with bio-inspired hybrid crosslinked network

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Stretchable and self-healable materials with excellent mechanical performance hold great promise for applications in flexible functional devices. Despite rapid developments, achieving high mechanical strength, extreme stretchability, and rapid self-healing capability in self-healing materials remains challenging. Here, inspired by the hierarchical structure and unique network of connective tissue, we fabricated a class of bionic nanocomposites with high stretchability, outstanding mechanical strength, and rapid self-healing ability by integrating the bottlebrush copolymer functionalized graphene oxide (BCP@GO) into a polyurethane (PU) matrix via in-situ polymerization. The bottlebrush copolymer (BCP) acted as a bond bridge for linking the GO nanosheets (noncovalent interaction) and PU chains (covalent and hydrogen-bond interaction). The covalent interactions were responsible for providing high mechanical strength, and the abundant hydrogen-bond-based cross-links realized extreme stretchability and rapid self-healing capability. The resultant BCP@GO/PU nanocomposite with only 0.5 wt.% GO loading exhibited excellent mechanical properties (tensile strength increased by 52.1%, up to 28.6 MPa; toughness increased by 70.8%, up to 256.9 MJ/m3; elongation at break increased by 12.8%, up to 1847.2%), exceptional rapid and efficient self-healing ability (~ 99% with 20 s NIR irradiation), as well as superior shape memory and recyclable capability. This study develops a new strategy for designing high-performance self-healing nanocomposites and unfolds broad application prospects in smart materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benas, J. S.; Liang, F. C.; Venkatesan, M.; Yan, Z. L.; Chen, W. C.; Han, S. T.; Zhou, Y.; Kuo, C. C. Recent development of sustainable self-healable electronic skin applications, a review with insight. Chem. Eng. J. 2023, 466, 142945.

    Article  CAS  Google Scholar 

  2. Liu, J.; Zhang, L.; Wang, N.; Zhao, H.; Li, C. Z. Nanofiber-reinforced transparent, tough, and self-healing substrate for an electronic skin with damage detection and program-controlled autonomic repair. Nano Energy 2022, 96, 107108.

    Article  CAS  Google Scholar 

  3. Peng, Y.; Gu, S. Y.; Wu, Q.; Xie, Z. T.; Wu, J. R. High-performance self-healing polymers. Acc. Mater. Res. 2023, 4, 323–333.

    Article  CAS  Google Scholar 

  4. Xu, J. H.; Li, Y. K.; Liu, T.; Wang, D.; Sun, F. Y.; Hu, P.; Wang, L.; Chen, J. Y.; Wang, X. B.; Yao, B. W. et al. Room-temperature self-healing soft composite network with unprecedented crack propagation resistance enabled by a supramolecular assembled lamellar structure. Adv. Mater. 2023, 35, 2300937.

    Article  CAS  Google Scholar 

  5. Park, S.; Thangavel, G.; Parida, K.; Li, S. H.; Lee, P. S. A stretchable and self-healing energy storage device based on mechanically and electrically restorative liquid-metal particles and carboxylated polyurethane composites. Adv. Mater. 2019, 31, 1805536.

    Article  Google Scholar 

  6. Li, F. L.; Xu, Z. F.; Hu, H.; Kong, Z. Y.; Chen, C.; Tian, Y.; Zhang, W. W.; Ying, W. B.; Zhang, R. Y.; Zhu, J. A polyurethane integrating self-healing, anti-aging and controlled degradation for durable and eco-friendly e-skin. Chem. Eng. J. 2020, 410, 128363.

    Article  Google Scholar 

  7. Guan, T. T.; Wang, X. H.; Zhu, Y. L.; Qian, L.; Lu, Z. Y.; Men, Y. F.; Li, J.; Wang, Y. T.; Sun, J. Q. Mechanically robust skin-like poly(urethane-urea) elastomers cross-linked with hydrogen-bond arrays and their application as high-performance ultrastretchable conductors. Macromolecules 2022, 55, 5816–5825.

    Article  CAS  Google Scholar 

  8. Zhou, J. L.; Yuan, Z. H.; Liu, H.; He, W. X.; Yu, K. J.; Chen, K. L. Bio-inspired self-healing flexible films with pomegranate-shaped nanosphere loaded graphene for electromagnetic interference shielding and superhydrophobicity performances. J. Mater. Chem. A 2022, 10, 24331–24344.

    Article  CAS  Google Scholar 

  9. Song, C. J.; Zhang, Y. H.; Bao, J. Y.; Wang, Z. Z.; Zhang, L. Y.; Sun, J.; Lan, R. C.; Yu, Z.; Zhu, S. Q.; Yang, H. Light-responsive programmable shape-memory soft actuator based on liquid crystalline polymer/polyurethane network. Adv. Funct. Mater. 2023, 33, 2213771.

    Article  CAS  Google Scholar 

  10. Wu, H.; Zhu, Z. L.; Gao, N. J.; Ma, L.; Li, J. W.; Liu, F. C. The biomimetic design provides efficient self-healing of ultrahigh-tough and damage-warning bio-based elastomer for protective clothing of metals. Nano Res. 2023, 16, 10587–10596.

    Article  CAS  Google Scholar 

  11. Wang, S.; Fang, Y. L.; He, H.; Zhang, L.; Li, C. A.; Ouyang, J. Y. Wearable stretchable dry and self-adhesive strain sensors with conformal contact to skin for high-quality motion monitoring. Adv. Funct. Mater. 2020, 31, 2007495.

    Article  Google Scholar 

  12. Ikura, R.; Park, J.; Osaki, M.; Yamaguchi, H.; Harada, A.; Takashima, Y. Design of self-healing and self-restoring materials utilizing reversible and movable crosslinks. NPG Asia Mater. 2022, 14, 10.

    Article  CAS  Google Scholar 

  13. Cao, J.; Lu, C. H.; Zhuang, J.; Liu, M. X.; Zhang, X. X.; Yu, Y. M.; Tao, Q. C. Multiple hydrogen bonding enables the self-healing of sensors for human-machine interactions. Angew. Chem., Int. Ed. 2017, 56, 8795–8800.

    Article  CAS  Google Scholar 

  14. Liu, X. H.; Su, G. H.; Guo, Q. Q.; Lu, C. H.; Zhou, T.; Zhou, C. L.; Zhang, X. X. Hierarchically structured self-healing sensors with tunable positive/negative piezoresistivity. Adv. Funct. Mater. 2018, 28, 1706658.

    Article  Google Scholar 

  15. Wang, X. Y.; Xu, J.; Zhang, Y. M.; Wang, T. M.; Wang, Q. H.; Li, S.; Yang, Z. H.; Zhang, X. R. A stretchable, mechanically robust polymer exhibiting shape-memory-assisted self-healing and clustering-triggered emission. Nat. Commun. 2023, 14, 4712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, J.; Gao, Y. Y.; Shi, L.; Yu, W.; Sun, Z. J.; Zhou, Y. F.; Liu, S.; Mao, H.; Zhang, D. Y.; Lu, T. Q. et al. Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability. Nat. Commun. 2022, 13, 4868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo, R.; Zhang, Q.; Wu, Y. S.; Chen, H. B.; Liu, Y. H.; Wang, J. J.; Duan, X. L.; Chen, Q.; Ge, Z. S.; Zhang, Y. F. Extremely strong and tough biodegradable poly(urethane) elastomers with unprecedented crack tolerance via hierarchical hydrogen-bonding interactions. Adv. Mater. 2023, 35, 2212130.

    Article  CAS  Google Scholar 

  18. Xu, Y. W.; Zhou, S.; Wu, Z. H.; Yang, X. Y.; Li, N.; Qin, Z. H.; Jiao, T. F. Room- temperature self-healing and recyclable polyurethane elastomers with high strength and superior robustness based on dynamic double-crosslinked structure. Chem. Eng. J. 2023, 466, 143179.

    Article  CAS  Google Scholar 

  19. Yanagisawa, Y.; Nan, Y. L.; Okuro, K.; Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 2017, 359, 72–76.

    Article  PubMed  Google Scholar 

  20. Yang, W. J.; Zhu, Y. L.; Liu, T. X.; Puglia, D.; Kenny, J. M.; Xu, P. W.; Zhang, R.; Ma, P. M. Multiple structure reconstruction by dual dynamic crosslinking strategy inducing self-reinforcing and toughening the polyurethane/nanocellulose elastomers. Adv. Funct. Mater. 2023, 33, 2213294.

    Article  CAS  Google Scholar 

  21. Li, T. Q.; Fang, X.; Pang, Q.; Huang, W. M.; Sun, J. Q. Healable and shape editable supercapacitors based on shape memory polyurethanes. J. Mater. Chem. A 2009, 7, 17456–17465.

    Article  Google Scholar 

  22. Li, Z. Q.; Zhu, Y. L.; Niu, W. W.; Yang, X.; Jiang, Z. Y.; Lu, Z. Y.; Liu, X. K.; Sun, J. Q. Healable and recyclable elastomers with record-high mechanical robustness, unprecedented crack tolerance, and superhigh elastic restorability. Adv. Mater. 2021, 33, 2101498.

    Article  CAS  Google Scholar 

  23. Wang, Y. Y.; Shu, R.; Zhang, X. X. Strong, supertough and self-healing biomimetic layered nanocomposites enabled by reversible interfacial polymer chain sliding. Angew. Chem., Int. Ed. 2023, 62, e202303446.

    Article  CAS  Google Scholar 

  24. Lotfi Mayan Sofla, R.; Rezaei, M.; Babaie, A.; Nasiri, M. Preparation of electroactive shape memory polyurethane/graphene nanocomposites and investigation of relationship between rheology, morphology and electrical properties. Composites B Eng. 2019, 175, 107090.

    Article  CAS  Google Scholar 

  25. Zhou, J. L.; Liu, H.; Sun, Y. Y.; Wang, C. X.; Chen, K. L. Self-healing titanium dioxide nanocapsules-graphene/multi-branched polyurethane hybrid flexible film with multifunctional properties toward wearable electronics. Adv. Funct. Mater. 2021, 31, 2011133.

    Article  CAS  Google Scholar 

  26. Du, W. N.; Jin, Y.; Shi, L. J.; Shen, Y. C.; Lai, S. Q.; Zhou, Y. T. NIR-light-induced thermoset shape memory polyurethane composites with self-healing and recyclable functionalities. Composites B Eng. 2020, 195, 108092.

    Article  CAS  Google Scholar 

  27. Zhu, X. B.; Zhang, W. J.; Lu, G. M.; Zhao, H. C.; Wang, L. P. Ultrahigh mechanical strength and robust room-temperature self-healing properties of a polyurethane-graphene oxide network resulting from multiple dynamic bonds. ACS Nano 2022, 16, 16724–16735.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou, Z. Q.; Wang, X. T.; Yu, H. C.; Yu, C. L.; Zhang, F. A. Dynamic cross-linked polyurea/polydopamine nanocomposites for photoresponsive self-healing and photoactuation. Macromolecules 2022, 55, 2193–2201.

    Article  CAS  Google Scholar 

  29. Li, Q. Y.; He, H.; Ye, X.; Guan, F. R.; Ai, Y. X.; Shen, Y.; Zhang, C. NIR light-induced functionalized MXene as a dynamic-crosslinker for reinforced polyurethane composites with shape memory and self-healing. Chem. Eng. J. 2023, 475, 146500.

    Article  CAS  Google Scholar 

  30. Tian, W.; Wang, S. L.; Guo, Z. L.; Yu, H. T.; Tian, L. M. Antifouling and anticorrosion function of repeatable self-healing polyurethane composite inspired by the self-healing principle of cartilage tissue. Chem. Eng. J. 2023, 462, 142346.

    Article  CAS  Google Scholar 

  31. Habibpour, S.; Um, J. G.; Jun, Y. S.; Bhargava, P.; Park, C. B.; Yu, A. P. Structural impact of graphene nanoribbon on mechanical properties and anti-corrosion performance of polyurethane nanocomposites. Chem. Eng. J. 2021, 405, 126858.

    Article  CAS  Google Scholar 

  32. Xu, W. Q.; Lv, Y. D.; Kong, M. Q.; Huang, Y. J.; Yang, Q.; Li, G. X. In-situ polymerization of eco-friendly waterborne polyurethane/polydopamine-coated graphene oxide composites towards enhanced mechanical properties and UV resistance. J. Cleaner Prod. 2022, 373, 133942

    Article  CAS  Google Scholar 

  33. Wang, Y. Y.; Huang, X.; Zhang, X. X. Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat. Commun. 2021, 12, 1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhu, X. B.; Zheng, W. R.; Zhao, H. C.; Wang, L. P. Non-covalent assembly of a super-tough, highly stretchable and environmentally adaptable self-healing material inspired by nacre. J. Mater. Chem. A 2021, 9, 20737–20747.

    Article  CAS  Google Scholar 

  35. Zhang, C. Q.; McadamsII, D. A.; Grunlan, J. C. Nano/micro-manufacturing of bioinspired materials: A review of methods to mimic natural structures. Adv. Mater. 2016, 28, 6292–6321.

    Article  CAS  PubMed  Google Scholar 

  36. Qi, M.; Yang, R. Q.; Wang, Z.; Liu, Y. T.; Zhang, Q. C.; He, B.; Li, K. W.; Yang, Q.; Wei, L.; Pan, C. F. et al. Bioinspired self-healing soft electronics. Adv. Funct. Mater. 2023, 33, 2214479.

    Article  CAS  Google Scholar 

  37. Freedman, B. R.; Mooney, D. J. Biomaterials to mimic and heal connective tissues. Adv. Mater. 2019, 31, 1806695.

    Article  Google Scholar 

  38. Li, W. H.; Liu, H.; Wang, H.; Chen, Y. W.; Peng, Y.; Wu, H. T.; Hou, Y. J.; Huang, Y.; Yuan, Z. Y.; Ye, B. J. et al. Biomimetic hybrid networks with excellent toughness and self-healing ability in the glassy state. Chem. Mater. 2023, 35, 682–691.

    Article  CAS  Google Scholar 

  39. Sun, Y. W.; Liu, Z.; Chen, F.; Xu, M.; Zhang, J. L.; Li, W. Hierarchical cross-linked poly(caprolactone-co-urethane) toward connective tissue-like properties and multifunctional integration. Chem. Mater. 2019, 31, 9295–9306.

    Article  CAS  Google Scholar 

  40. Zhang, S. H.; Jiang, Z. Y.; Shi, J. F.; Wang, X. Y.; Han, P. P.; Qian, W. L. An efficient, recyclable, and stable immobilized biocatalyst based on bioinspired microcapsules-in-hydrogel scaffolds. ACS Appl. Mater. Interfaces 2016, 8, 25152–25161.

    Article  CAS  PubMed  Google Scholar 

  41. Kim, I. H.; Yun, T.; Kim, J. E.; Yu, H.; Sasikala, S. P.; Lee, K. E.; Koo, S. H.; Hwang, H.; Jung, H. J.; Park, J. Y. et al. Mussel-inspired defect engineering of graphene liquid crystalline fibers for synergistic enhancement of mechanical strength and electrical conductivity. Adv. Mater. 2018, 30, 1803267.

    Article  Google Scholar 

  42. Kim, H.; Kim, D. W.; Vasagar, V.; Ha, H.; Nazarenko, S.; Ellison, C. J. Polydopamine- graphene oxide flame retardant nanocoatings applied via an aqueous liquid crystalline scaffold. Adv. Funct. Mater. 2018, 28, 1803172.

    Article  Google Scholar 

  43. Nouri, N.; Rezaei, M.; Mayan Sofla, R. L.; Babaie, A. Synthesis of reduced octadecyl isocyanate-functionalized graphene oxide nanosheets and investigation of their effect on physical, mechanical, and shape memory properties of polyurethane nanocomposites. Compos. Sci. Technol. 2020, 194, 108170.

    Article  CAS  Google Scholar 

  44. Chen, S. L.; Shen, B.; Zhang, F.; Hong, H.; Pan, J. H. Mussel-inspired graphene film with enhanced durability as a macroscale solid lubricant. ACS Appl. Mater. Interfaces 2019, 11, 31386–31392.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, H.; He, Q. X.; Yu, H. T.; Qin, M. M.; Feng, Y. Y.; Feng, W. A bioinspired polymer-based composite displaying both strong adhesion and anisotropic thermal conductivity. Adv. Funct. Mater. 2023, 33, 2211985.

    Article  CAS  Google Scholar 

  46. Du, W. N.; Jin, Y.; Lai, S. Q.; Shi, L. J.; Shen, Y. C.; Yang, H. Multifunctional light-responsive graphene-based polyurethane composites with shape memory, self-healing, and flame retardancy properties. Composites A Appl. Sci. Manuf. 2020, 128, 105686.

    Article  CAS  Google Scholar 

  47. Dai, S. Y.; Yue, S. S.; Ning, Z. B.; Jiang, N.; Gan, Z. H. Polydopamine nanoparticle-reinforced near-infrared light-triggered shape memory polycaprolactone-polydopamine polyurethane for biomedical implant applications. ACS Appl. Mater. Interfaces 2022, 14, 14668–14676.

    Article  CAS  PubMed  Google Scholar 

  48. Liu, X. C.; Wu, J. Y.; Tang, Z. L.; Wu, J. X.; Huang, Z. Y.; Yin, X. S.; Du, J. H.; Lin, X. F.; Lin, W. J.; Yi, G. B. Photoreversible bond-based shape memory polyurethanes with light-induced self-healing, recyclability, and 3d fluorescence encryption. ACS Appl. Mater. Interfaces 2022, 14, 33829–33841.

    Article  CAS  Google Scholar 

  49. Li, T. Q.; Li, Y.; Wang, X. H.; Li, X.; Sun, J. Q. Thermally and near-infrared light-induced shape memory polymers capable of healing mechanical damage and fatigued shape memory function. ACS Appl. Mater. Interfaces 2019, 11, 9470–9477.

    Article  CAS  PubMed  Google Scholar 

  50. Wang, J.; Lin, X.; Wang, R. G.; Lu, Y. L.; Zhang, L. Q. Self-healing, photothermal-responsive, and shape memory polyurethanes for enhanced mechanical properties of 3D/4D printed objects. Adv. Funct. Mater. 2023, 33, 2211579.

    Article  CAS  Google Scholar 

  51. Xia, Y. L.; He, Y.; Zhang, F. H.; Liu, Y. J.; Leng, J. S. A review of shape memory polymers and composites: Mechanisms, materials, and applications. Adv. Mater. 2021, 33, 2000713.

    Article  CAS  Google Scholar 

  52. Zhang, Y. F.; Xu, Z. S.; Yuan, Y.; Liu, C. Y.; Zhang, M.; Zhang, L. Q.; Wan, P. B. Flexible antiswelling photothermal-therapy MXene hydrogel-based epidermal sensor for intelligent human-machine interfacing. Adv. Funct. Mater. 2023, 33, 2300299.

    Article  CAS  Google Scholar 

  53. Chien, Y. C.; Chuang, W. T.; Jeng, U. S.; Hsu, S. H. Preparation, characterization, and mechanism for biodegradable and biocompatible polyurethane shape memory elastomers. ACS Appl. Mater. Interfaces 2017, 9, 5419–5429.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, Y. C.; Hu, J. L.; Zhao, X.; Xie, R. Q.; Qin, T. W.; Ji, F. L. Mechanically robust shape memory polyurethane nanocomposites for minimally invasive bone repair. ACS Appl. Bio Mater. 2019, 2, 1056–1065.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22278140, U22B20143, and 52273008), the Science and Technology Commission of Shanghai Municipality (Nos. 22DZ1205900 and 22ZR1479300), Shanghai Rising-Star Program (No. 23QA1402500), Project supported by Shanghai Municipal Science and Technology Major Project, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Binbin Xu, Ling Zhang or Chunzhong Li.

Electronic supplementary material

12274_2024_6559_MOESM1_ESM.pdf

High-strength, stretchable, and NIR-induced rapid self-healing polyurethane nanocomposites with bio-inspired hybrid crosslinked network

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, T., Zhu, J., Zhao, H. et al. High-strength, stretchable, and NIR-induced rapid self-healing polyurethane nanocomposites with bio-inspired hybrid crosslinked network. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6559-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6559-8

Keywords

Navigation