Skip to main content
Log in

Investigation of operation and degradation mechanisms in ZnTeSe blue quantum-dot light-emitting diodes by identifying recombination zone

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

ZnTeSe quantum dots (QDs), recognized as promising eco-friendly blue electroluminescent emitters, remain under-explored in light-emitting diode (LED) applications. Here, to elucidate the operation and degradation mechanisms of ZnTeSe blue QD-LEDs, stacked ZnTeSe QD layers with discernable luminescence are designed by varying Te doping concentrations, and the recombination zones (RZs) of the blue QD-LEDs are investigated. The RZs are identified near the hole-transport layer (HTL), confirmed by angular-dependent electroluminescence measurements and optical simulations. In addition, in order to investigate carrier dynamics in the process of recombination, the transient electroluminescence (tr-EL) signals of the dichromatic QD-LEDs are analyzed. As a result, it is inferred that the RZ initially formed near the electron-transport layer (ETL) due to the high injection barriers of electrons. However, due to the fast electron mobility, the RZ shifts toward the HTL as the operating current increases. After the device lifetime tests, the RZ remains stationary while the photoluminescence (PL) corresponding to the RZ undergoes a substantial decrease, indicating that the degradation is accelerated by the concentrated RZ. Thus this study contributes to a deeper understanding of the operational mechanisms of ZnTeSe blue QD-LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357.

    Article  ADS  CAS  Google Scholar 

  2. Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q.; Chen, L. W.; Yan, X. L.; Qian, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9, 2608.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  3. Li, X. Y.; Lin, Q. L.; Song, J. J.; Shen, H. B.; Zhang, H. M.; Li, L. S.; Li, X. G.; Du, Z. L. Quantum-dot light-emitting diodes for outdoor displays with high stability at high brightness. Adv. Opt. Mater. 2020, 8, 1901145.

    Article  CAS  Google Scholar 

  4. Wang, L. S.; Lin, J.; Hu, Y. S.; Guo, X. Y.; Lv, Y.; Tang, Z. B.; Zhao, J. L.; Fan, Y.; Zhang, N.; Wang, Y. J. et al. Blue quantum dot light-emitting diodes with high electroluminescent efficiency. ACS Appl. Mater. Interfaces 2017, 9, 38755–38760.

    Article  CAS  PubMed  Google Scholar 

  5. Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

    Article  ADS  CAS  Google Scholar 

  6. Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Ye, Y. X.; Zheng, X. R.; Chen, D. S.; Deng, Y. Z.; Chen, D.; Hao, Y. L.; Dai, X. L.; Jin, Y. Z. Design of the hole-injection/hole-transport interfaces for stable quantum-dot light-emitting diodes. J. Phys. Chem. Lett. 2020, 11, 4649–4654.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, X. T.; Lin, X. F.; Zhou, L. K.; Sun, X. J.; Li, R.; Chen, M. Y.; Yang, Y. X.; Hou, W. J.; Wu, L. J.; Cao, W. R. et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling. Nat Commun. 2023, 14, 284.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jang, H. J.; Lee, J. Y.; Baek, G. W.; Kwak, J.; Park, J. H. Progress in the development of the display performance of AR, VR, QLED and OLED devices in recent years. J. Inf. Disp. 2022, 23, 1–17.

    Article  Google Scholar 

  10. Tamang, S.; Lincheneau, C.; Hermans, Y.; Jeong, S.; Reiss, P. Chemistry of InP nanocrystal syntheses. Chem. Mater. 2016, 28, 2491–2506.

    Article  CAS  Google Scholar 

  11. Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Yu, P.; Cao, S.; Shan, Y. L.; Bi, Y. H.; Hu, Y. Q.; Zeng, R. S.; Zou, B. S.; Wang, Y. J.; Zhao, J. L. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component. Light Sci. Appl. 2022, 11, 162.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, Y. M.; Wu, Q. Q.; Wang, L.; Sun, Z. J.; Cao, F.; Kong, L. M.; Li, L. F.; Zhang, C. X.; Wang, S.; Zhang, Z. J. et al. Boosting the efficiency and stability of green InP quantum dot light emitting diodes by interface dipole modulation. J. Mater. Chem. C 2022, 10, 8192–8198.

    Article  CAS  Google Scholar 

  14. Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Wang, A. Q.; Shen, H. B.; Zang, S. P.; Lin, Q. L.; Wang, H. Z.; Qian, L.; Niu, J. Z.; Li, L. S. Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes. Nanoscale 2015, 7, 2951–2959.

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Lin, Q. L.; Shen, H. B.; Wang, H. Z.; Wang, A. Q.; Niu, J. Z.; Qian, L.; Guo, F.; Li, L. S. Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers. Org. Electron. 2015, 25, 178–183.

    Article  CAS  Google Scholar 

  17. Han, C. Y.; Lee, S. H.; Song, S. W.; Yoon, S. Y.; Jo, J. H.; Jo, D. Y.; Kim, H. M.; Lee, B. J.; Kim, H. S.; Yang, H. More than 9% efficient ZnSeTe quantum dot-based blue electroluminescent devices. ACS Energy Lett. 2020, 5, 1568–1576.

    Article  CAS  Google Scholar 

  18. Jang, E. P.; Han, C. Y.; Lim, S. W.; Jo, J. H.; Jo, D. Y.; Lee, S. H.; Yoon, S. Y.; Yang, H. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters. ACS Appl. Mater. Interfaces 2019, 11, 46062–46069.

    Article  CAS  PubMed  Google Scholar 

  19. Yuan, C. X.; Tian, F. S.; Chen, S. M. ZnSeTe blue top-emitting QLEDs with color saturation near Rec.2020 standards and efficiency over 18.16%. Nano Res. 2023, 16, 5517–5524.

    Article  ADS  CAS  Google Scholar 

  20. Zhang, H.; Ma, X. Y.; Lin, Q. L.; Zeng, Z. P.; Wang, H. Z.; Li, L. S.; Shen, H. B.; Jia, Y.; Du, Z. L. High-brightness blue InP quantum dot-based electroluminescent devices: The role of shell thickness. J. Phys. Chem. Lett. 2020, 11, 960–967.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, W. D.; Ding, S. H.; Zhuang, W. D.; Wu, D.; Liu, P.; Qu, X. W.; Liu, H. C.; Yang, H. C.; Wu, Z. H.; Wang, K. et al. InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 2020, 30, 2005303.

    Article  CAS  Google Scholar 

  22. Zhang, W. D.; Tan, Y. Z.; Duan, X. J.; Zhao, F. Q.; Liu, H. C.; Chen, W.; Liu, P.; Liu, X. G.; Wang, K.; Zhang, Z. K. et al. High quantum yield blue InP/ZnS/ZnS quantum dots based on bromine passivation for efficient blue light-emitting diodes. Adv. Opt. Mater. 2022, 10, 2200685.

    Article  CAS  Google Scholar 

  23. Kim, J.; Hahm, D.; Bae, W. K.; Lee, H.; Kwak, J. Transient dynamics of charges and excitons in quantum dot light-emitting diodes. Small 2022, 18, 2202290.

    Article  CAS  Google Scholar 

  24. Bae, W. K.; Kwak, J.; Lim, J.; Lee, D.; Nam, M. K.; Char, K.; Lee, C.; Lee, S. Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method. Nano Lett. 2010, 10, 2368–2373.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Malliaras, G. G.; Scott, J. C. The roles of injection and mobility in organic light emitting diodes. J. Appl. Phys. 1998, 83, 5399–5403.

    Article  ADS  CAS  Google Scholar 

  26. Coburn, C.; Forrest, S. R. Effects of charge balance and exciton confinement on the operational lifetime of blue phosphorescent organic light-emitting diodes. Phys. Rev. Appl. 2017, 7, 041002.

    Article  ADS  Google Scholar 

  27. Erickson, N. C.; Holmes, R. J. Investigating the role of emissive layer architecture on the exciton recombination zone in organic light-emitting devices. Adv. Funct. Mater. 2013, 23, 5190–5198.

    Article  CAS  Google Scholar 

  28. Song, W.; Kim, T.; Lee, Y.; Lee, J. Y. A stepwise energy level doping structure for improving the lifetime of phosphorescent organic light-emitting diodes. J. Mater. Chem. C 2017, 5, 3948–3954.

    Article  CAS  Google Scholar 

  29. Jesuraj, P. J.; Hafeez, H.; Kim, D. H.; Lee, J. C.; Lee, W. H.; Choi, D. K.; Kim, C. H.; Song, M.; Kim, C. S.; Ryu, S. Y. Recombination zone control without sensing layer and the exciton confinement in green phosphorescent OLEDs by excluding interface energy transfer. J. Phys. Chem. C 2018, 122, 2951–2958.

    Article  CAS  Google Scholar 

  30. Van Mensfoort, S. L. M.; Carvelli, M.; Megens, M.; Wehenkel, D.; Bartyzel, M.; Greiner, H.; Janssen, R. A. J.; Coehoorn, R. Measuring the light emission profile in organic light-emitting diodes with nanometre spatial resolution. Nat. Photonics 2010, 4, 329–335.

    Article  CAS  Google Scholar 

  31. Qu, X. W.; Xiang, G. H.; Ma, J. R.; Liu, P.; Kyaw, A. K. K.; Wang, K.; Sun, X. W. Identifying the dominant carrier of CdSe-based blue quantum dot light-emitting diode. Appl. Phys. Lett. 2023, 122, 113501.

    Article  ADS  CAS  Google Scholar 

  32. Han, C. Y.; Yoon, S. Y.; Lee, S. H.; Song, S. W.; Jo, D. Y.; Jo, J. H.; Kim, H. M.; Kim, H. S.; Yang, H. High-performance tricolored white lighting electroluminescent devices integrated with environmentally benign quantum dots. Nanoscale Horiz. 2021, 6, 168–176.

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Fu, Y.; Kim, D.; Jiang, W.; Yin, W. P.; Ahn, T. K.; Chae, H. Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots. RSC Adv. 2017, 7, 40866–40872.

    Article  ADS  CAS  Google Scholar 

  34. Sun, J. H.; Huang, J. H.; Lan, X. Y.; Zhang, F. C.; Zhao, L. Z.; Zhang, Y. Enhancing the performance of blue quantum-dot light-emitting diodes through the incorporation of polyethylene glycol to passivate ZnO as an electron transport layer. RSC Adv. 2020, 10, 23121–23127.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv. Mater. 2019, 31, 1804294.

    Article  Google Scholar 

  36. Davidson-Hall, T.; Aziz, H. Perspective: Toward highly stable electroluminescent quantum dot light-emitting devices in the visible range. Appl. Phys. Lett. 2020, 116, 010502.

    Article  ADS  CAS  Google Scholar 

  37. Cai, W. B.; Ren, Y. J.; Huang, Z. G.; Sun, Q.; Shen, H. C.; Wang, Y. Emission mechanism of bright and eco-friendly ZnSeTe quantum dots. Adv. Opt. Mater., in press, https://doi.org/10.1002/adom.202301970.

  38. Barth, S.; Müller, P.; Riel, H.; Seidler, P. F.; Rieß, W.; Vestweber, H.; Bässler, H. Electron mobility in tris(8-hydroxy-quinoline)aluminum thin films determined via transient electroluminescence from single- and multilayer organic light-emitting diodes. J. Appl. Phys. 2001, 89, 3711–3719.

    Article  ADS  CAS  Google Scholar 

  39. Su, Q.; Zhang, H.; Chen, S. M. Identification of excess charge carriers in InP-based quantum-dot light-emitting diodes. Appl. Phys. Lett. 2020, 117, 053502.

    Article  ADS  CAS  Google Scholar 

  40. Chen, S.; Cao, W. R.; Liu, T. L.; Tsang, S. W.; Yang, Y. X.; Yan, X. L.; Qian, L. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 2019, 10, 765.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chang, J. H.; Lee, H. J.; Rhee, S.; Hahm, D.; Jeong, B. G.; Nagamine, G.; Padilha, L. A.; Char, K.; Hwang, E.; Bae, W. K. Pushing the band gap envelope of quasi-type II heterostructured nanocrystals to blue: ZnSe/ZnSe1−xTex/ZnSe spherical quantum wells. Adv. Energy Mater. 2021, 2021, 3245731.

    Article  ADS  Google Scholar 

  42. Huang, Z. G.; Sun, Q.; Zhao, S. Y.; Wu, B. Q.; Zhang, M. S.; Zang, Z. G.; Wang, Y. Deciphering ultrafast carrier dynamics of eco-friendly ZnSeTe-based quantum dots: Toward high-quality blue-green emitters. J. Phys. Chem. Lett. 2021, 12, 11931–11938.

    Article  CAS  PubMed  Google Scholar 

  43. Gao, P. L.; Chen, Z. N.; Chen, S. M. Electron-induced degradation in blue quantum-dot light-emitting diodes. Adv. Mater., in press, https://doi.org/10.1002/adma.202309123.

  44. Tanaka, M.; Noda, H.; Nakanotani, H.; Adachi, C. Effect of carrier balance on device degradation of organic light-emitting diodes based on thermally activated delayed fluorescence emitters. Adv. Electron. Mater. 2019, 5, 1800708.

    Article  Google Scholar 

  45. Lee, S.; Ha, H.; Lee, J. Y.; Shon, H. K.; Lee, T. G.; Suh, M. C.; Park, Y. Degradation mechanism of solution-processed organic light-emitting diodes: Sputter depth-profile study. Appl. Surf. Sci. 2021, 564, 150402.

    Article  CAS  Google Scholar 

  46. Jeon, S. K.; Lee, J. Y. Direct monitoring of recombination zone shift during lifetime measurement of phosphorescent organic light-emitting diodes. J. Ind. Eng. Chem. 2015, 32, 332–335.

    Article  CAS  Google Scholar 

  47. Qian, L.; Zheng, Y.; Xue, J. G.; Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 2011, 5, 543–548.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Samsung Advanced Institute of Technology at Samsung Electronics Co., Ltd. for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taehyung Kim or Jeonghun Kwak.

Electronic Supplementary Material

12274_2024_6541_MOESM1_ESM.pdf

Investigation of operation and degradation mechanisms in ZnTeSe blue quantum-dot light-emitting diodes by identifying recombination zone

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, O., Park, S., Chang, H. et al. Investigation of operation and degradation mechanisms in ZnTeSe blue quantum-dot light-emitting diodes by identifying recombination zone. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6541-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6541-5

Keywords

Navigation