Skip to main content
Log in

Co-enhancement of thermal conduction and radiation through morphologies controlling of graphene functional layer for chip thermal management

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

With the continuous advancements in electronics towards downsizing and integration, efficient thermal dissipation from chips has emerged as a critical factor affecting their lifespan and operational efficiency. The fan-less chip cooling system has two critical interfaces for thermal transport, which are the contact interface between the base and the chip dominated by thermal conduction, and the surface of the fins dominated by thermal radiation. The different thermal transfer modes of these two critical interfaces pose different requirements for thermal management materials. In the study, a novel approach was proposed by developing graphene thermal transport functional material whose morphology could be intentionally designed via reformed plasma-enhanced chemical vapor deposition (PECVD) methods to meet the diverse requirements of heat transfer properties. Specifically, graphene with multilevel branching structure of vertical graphene (BVG) was fabricated through the hydrogen-assisted PECVD (H2-PECVD) strategy, which contributed a high emissivity of ∼ 0.98. BVG was deposited on the fins’ surface and functioned as the radiation enhanced layer to facilitate the rapid radiation of heat from the heat sinks into the surrounding air. Meanwhile, the well-oriented vertical graphene (OVG) was successfully prepared through the vertical electric field-assisted PECVD process (EF-PECVD), which showed a high directional thermal conductivity of ∼ 53.5 W·m−1·K−1. OVG was deposited on the contact interface and functioned as the thermal conduction enhanced layer, allowing for the quick transmission of heat from the chip to the heat sink. Utilizing this design concept, the two critical interfaces in the chip cooling system can be jointly enhanced, resulting in a remarkable cooling efficiency enhancement of ∼ 30.7%, demonstrating that this novel material possessed enormous potential for enhancing the performance of cooling systems. Therefore, this research not only provided new design concepts for the cooling system of electronic devices but also opened up new avenues for the application of graphene materials in thermal management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, S.; Zheng, Q. Y.; Lv, Y. C.; Liu, X. Y.; Wang, X. Q.; Huang, P. Y.; Cahill, D. G.; Lv, B. High thermal conductivity in cubic boron arsenide crystals. Science 2018, 361, 579–581.

    Article  CAS  PubMed  Google Scholar 

  2. Cho, J.; Goodson, K. E. Cool electronics. Nat. Mater., 2015, 14, 136–137.

    Article  CAS  PubMed  Google Scholar 

  3. Garimella, S. V.; Yeh, L. T.; Persoons, T. Thermal management challenges in telecommunication systems and data centers. IEEE Trans. Compon. Packag. Manuf. Technol. 2012, 2, 1307–1316.

    Article  Google Scholar 

  4. Weng, Y. Z. W.; Wu, S. C.; Wang, L. B.; Zhao, W. Y.; Jiang, Y.; Deng, Y. An efficient cooling solution with 3D interconnected graphene architectures for passive heat dissipation. J. Mater. Chem. C 2022, 10, 13167–13173.

    Article  CAS  Google Scholar 

  5. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581.

    Article  CAS  PubMed  Google Scholar 

  6. Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    Article  CAS  PubMed  Google Scholar 

  7. Qi, Y.; Sun, L. Z.; Liu, Z. F. Super graphene-skinned material: A new member of graphene materials family. Acta Phys. Chim. Sin. 2023, 39, 22–30.

    Google Scholar 

  8. Liu, R. J.; Yuan, H.; Li, J. L.; Huang, K. W.; Wang, K.; Cheng, Y.; Cheng, S. T.; Li, W. J.; Jiang, J.; Tu, C. et al. Complementary chemical vapor deposition fabrication for large-area uniform graphene glass fiber fabric. Small Methods 2022, 6, 2200499.

    Article  CAS  Google Scholar 

  9. Zhou, M. F.; Xu, X. F.; Wan, G. P.; Mou, P. P.; Teng, S. J.; Wang, G. Z. Rationally tailoring interface characteristics of ZnO/amorphous carbon/graphene for heat-conduction microwave absorbers. Nano Res. 2022, 15, 8677–8687.

    Article  CAS  Google Scholar 

  10. Wei, Q. Y.; Li, L.; Deng, Z.; Wan, G. P.; Zhang, Y.; Du, C. L.; Su, Y. R.; Wang, G. Z. Scalable fabrication of nacre-structured graphene/polytetrafluoroethylene films for outstanding EMI shielding under extreme environment. Small 2023, 19, 2302082.

    Article  CAS  Google Scholar 

  11. Wu, Z. H.; Xu, C.; Ma, C. Q.; Liu, Z. B.; Cheng, H. M.; Ren, W. C. Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites. Adv. Mater. 2019, 31, 1900199.

    Article  Google Scholar 

  12. An, F.; Li, X. F.; Min, P.; Li, H. F.; Dai, Z.; Yu, Z. Z. Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites. Carbon 2018, 126, 119–127.

    Article  CAS  Google Scholar 

  13. Xu, S. C.; Wang, S. S.; Chen, Z.; Sun, Y. Y.; Gao, Z. F.; Zhang, H.; Zhang, J. Electric-field-assisted growth of vertical graphene arrays and the application in thermal interface materials. Adv. Funct. Mater. 2020, 30, 2003302.

    Article  CAS  Google Scholar 

  14. Yan, Q. W.; Alam, F. E.; Gao, J. Y.; Dai, W.; Tan, X.; Lv, L.; Wang, J. J.; Zhang, H.; Chen, D.; Nishimura, K. et al. Soft and self-adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv. Funct. Mater. 2021, 31, 2104062.

    Article  CAS  Google Scholar 

  15. Yuan, H.; Zhang, H.; Huang, K. W.; Cheng, Y.; Wang, K.; Cheng, S. T.; Li, W. J.; Jiang, J.; Li, J. L.; Tu, C. et al. Dual-emitter graphene glass fiber fabric for radiant heating. ACS Nano 2022, 16, 2577–2584.

    Article  CAS  PubMed  Google Scholar 

  16. Cheng, Y.; Cheng, S. T.; Chen, B. B.; Jiang, J.; Tu, C.; Li, W. J.; Yang, Y. Y.; Huang, K. W.; Wang, K.; Yuan, H. et al. Graphene infrared radiation management targeting photothermal conversion for electric-energy-free crude oil collection. J. Am. Chem. Soc. 2022, 144, 15562–15568.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, K.; Cheng, S. T.; Yang, J. W.; Cheng, Y.; Ci, Q.; Yuan, H.; Huang, K. W.; Liu, R. J.; Li, W. J.; Li, J. L. et al. Bush-shaped vertical graphene/nichrome wire for blackbody-like radiative heating. Adv. Funct. Mater. 2022, 32, 2208785.

    Article  CAS  Google Scholar 

  18. Mou, P. P.; Wan, G. P.; Wu, L. H.; Liu, D. S.; Wang, G. Z. Optimizing impedance matching and interfacial characteristics of aromatic polyimide/graphene by molecular layer deposition for heat-conducting microwave absorption. J. Mater. Chem. A 2023, 11, 4345–4354.

    Article  CAS  Google Scholar 

  19. Liang, Q. Z.; Yao, X. X.; Wang, W.; Liu, Y.; Wong, C. P. A three-dimensional vertically aligned functionalized multilayer graphene architecture: An approach for graphene-based thermal interfacial materials. ACS Nano 2011, 5, 2392–2401.

    Article  CAS  PubMed  Google Scholar 

  20. Shen, X.; Wang, Z. Y.; Wu, Y.; Liu, X.; He, Y. B.; Kim, J. K. Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett. 2016, 16, 3585–3593.

    Article  CAS  PubMed  Google Scholar 

  21. Renteria, J. D.; Ramirez, S.; Malekpour, H.; Alonso, B.; Centeno, A.; Zurutuza, A.; Cocemasov, A. I.; Nika, D. L.; Balandin, A. A. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater. 2015, 25, 4664–1672.

    Article  CAS  Google Scholar 

  22. Suryawanshi, C. N.; Kim, T.; Lin, C. T. An instrument for evaluation of performance of heat dissipative coatings. Rev. Sci. Instrum. 2010, 81, 035105.

    Article  PubMed  Google Scholar 

  23. Strnad, J.; Vengar, A. Stefan’s measurement of the thermal conductivity of air. Eur. J. Phys. 1984, 5, 9–12.

    Article  Google Scholar 

  24. Suryawanshi, C. N.; Lin, C. T. Radiative cooling: Lattice quantization and surface emissivity in thin coatings. ACS Appl. Mater. Interfaces 2009, 1, 1334–1338.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, G.; Jiang, S. H.; Zhang, H.; Yao, W.; Liu, C. H. Excellent heat dissipation properties of the super-aligned carbon nanotube films. RSC Adv. 2016, 6, 61686–61694.

    Article  CAS  Google Scholar 

  26. Cheng, S. T.; Chen, M.; Wang, K.; Liu, Q. Q.; Cheng, Y.; Dong, R. H.; Huang, K. W.; Yuan, H.; Jiang, J.; Li, W. J. et al. Multifunctional glass fibre filter modified with vertical graphene for one-step dynamic water filtration and disinfection. J. Mater. Chem. A 2022, 10, 12125–12131.

    Article  CAS  Google Scholar 

  27. Pan, D.; Yang, G.; Abo-Dief, H. M.; Dong, J. W.; Su, F. M.; Liu, C. T.; Li, Y. F.; Bin Xu, B.; Murugadoss, V.; Naik, N. et al. Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 2022, 14, 118.

    Article  CAS  Google Scholar 

  28. Malesevic, A.; Vitchev, R.; Schouteden, K.; Volodin, A.; Zhang, L.; Tendeloo, G. V.; Vanhulsel, A.; Haesendonck, C. V. Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 2008, 19, 305604.

    Article  PubMed  Google Scholar 

  29. Zhu, M. Y.; Wang, J. J.; Holloway, B. C.; Outlaw, R. A.; Zhao, X.; Hou, K.; Shutthanandan, V.; Manos, D. M. A mechanism for carbon nanosheet Formation. Carbon 2007, 45, 2229–2234.

    Article  CAS  Google Scholar 

  30. Zhao, J.; Shaygan, M.; Eckert, J.; Meyyappan, M.; Rümmeli, M. H. A growth mechanism for free-standing vertical graphene. Nano Lett. 2014, 14, 3064–3071.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, K.; Cheng, S. T.; Hu, Q. M.; Yu, F.; Cheng, Y.; Huang, K. W.; Yuan, H.; Jiang, J.; Li, W. J.; Li, J. L. et al. Vertical graphene-coated Cu wire for enhanced tolerance to high current density in power transmission. Nano Res. 2022, 15, 9727–9733.

    Article  CAS  Google Scholar 

  32. Zhang, H.; Wu, S. D.; Lu, Z. Y.; Chen, X. C.; Chen, Q. X.; Gao, P. Q.; Yu, T. B.; Peng, Z. J.; Ye, J. C. Efficient and controllable growth of vertically oriented graphene nanosheets by mesoplasma chemical vapor deposition. Carbon 2019, 147, 341–347.

    Article  CAS  Google Scholar 

  33. Yu, W.; Duan, Z.; Zhang, G.; Liu, C. H.; Fan, S. S. Effect of an auxiliary plate on passive heat dissipation of carbon nanotube-based materials. Nano Lett. 2018, 18, 1770–1776.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, G.; Jiang, S. H.; Yao, W.; Liu, C. H. Enhancement of natural convection by carbon nanotube films covered microchannel-surface for passive electronic cooling devices. ACS Appl. Mater. Interfaces 2016, 8, 31202–31211.

    Article  CAS  PubMed  Google Scholar 

  35. Zhu, J.; Tang, D. W.; Wang, W.; Liu, J.; Holub, K. W.; Yang, R. G. Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films. J. Appl. Phys. 2010, 108, 94315.

    Article  Google Scholar 

  36. Sun, F. Y.; Wang, X. W.; Yang, M.; Chen, Z.; Zhang, H.; Tang, D. W. Simultaneous measurement of thermal conductivity and specific heat in a single TDTR experiment. Int. J. Thermophys. 2018, 39, 5.

    Article  Google Scholar 

  37. Ping, L. Q.; Hou, P. X.; Liu, C.; Li, J. C.; Zhao, Y.; Zhang, F.; Ma, C. Q.; Tai, K. P.; Cong, H. T.; Cheng, H. M. Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance. Nanoscale 2017, 9, 8213–8219.

    Article  CAS  PubMed  Google Scholar 

  38. Eyassu, T.; Hsiao, T. J.; Henderson, K.; Kim, T.; Lin, C. T. Molecular cooling fan: Factors for optimization of heat dissipation devices and applications. Ind. Eng. Chem. Res. 2014, 53, 19550–19558.

    Article  CAS  Google Scholar 

  39. Yu, W.; Zhang, G.; Liu, C. H.; Fan, S. S. Hard carbon nanotube sponges for highly efficient cooling via moisture absorption-desorption process. ACS Nano 2020, 14, 14091–14099.

    Article  CAS  PubMed  Google Scholar 

  40. Yu, W.; Liu, C. H.; Fan, S. S. High water-absorbent and phase-change heat dissipation materials based on super-aligned cross-stack CNT films. Adv. Eng. Mater. 2019, 21, 1801216.

    Article  Google Scholar 

  41. Teng, T. P.; Teng, T. C. Enhance heat dissipation for projection lamps by MWCNTs nano-coating. Appl. Therm. Eng. 2013, 51, 1098–1106.

    Article  CAS  Google Scholar 

  42. Wang, S. Q.; Wang, Y. M.; Zou, Y. C.; Chen, G. L.; Ouyang, J. H.; Jia, D. C.; Zhou, Y. Biologically inspired scalable-manufactured dual-layer coating with a hierarchical micropattern for highly efficient passive radiative cooling and robust superhydrophobicity. ACS Appl. Mater. Interfaces 2021, 13, 21888–21897.

    Article  CAS  PubMed  Google Scholar 

  43. Zou, Y. C.; Wang, Y. M.; Wei, D. Q.; Ge, Y. L.; Ouyang, J. H.; Jia, D. C.; Zhou, Y. Facile one-step fabrication of multilayer nanocomposite coating for radiative heat dissipation. ACS Appl. Electron. Mater. 2019, 1, 1527–1537.

    Article  CAS  Google Scholar 

  44. Cai, Y.; Yu, H. T.; Chen, C.; Feng, Y. Y.; Qin, M. M.; Feng, W. Improved thermal conductivities of vertically aligned carbon nanotube arrays using three-dimensional carbon nanotube networks. Carbon 2022, 196, 902–912.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52272032, T2188101, and 52021006) and the Beijing Nova Program of Science and Technology (No. 20220484079).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaobai Wang, Yue Qi or Zhongfan Liu.

Electronic Supplementary Material

12274_2024_6540_MOESM1_ESM.pdf

Co-enhancement of thermal conduction and radiation through morphologies controlling of graphene functional layer for chip thermal management

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, S., Wang, K., Xu, S. et al. Co-enhancement of thermal conduction and radiation through morphologies controlling of graphene functional layer for chip thermal management. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6540-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6540-6

Keywords

Navigation