Skip to main content

Graphene Applications in Advanced Thermal Management

  • Chapter
  • First Online:
Nanopackaging

Abstract

Development of the next generation of micro- and nanoscale electronics requires efficient thermal management. As the dissipated power density increases, heat removal becomes a critical issue. This motivates researchers to investigate and synthesize materials that can drastically improve thermal management of electronic devices. The discovery of the exceptionally high thermal conductivity of graphene has led to significant progress in thermally conductive coatings and thermal interface materials. In this chapter, we review recent progress in graphene applications for thermal management, focusing on graphene laminates, reduced graphene oxide films, and graphene fillers in composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malekpour H, Chang KH, Chen JC, Lu CY, Nika DL, Novoselov KS, Balandin AA (2014) Thermal conductivity of graphene laminate. Nano Lett 14(9):5155–5161

    Article  CAS  Google Scholar 

  2. Renteria JD, Ramirez S, Malekpour H, Alonso B, Centeno A, Zurutuza A, Cocemasov AI, Nika DL, Balandin AA (2015) Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv Funct Mater 25(29):4664–4672

    Article  CAS  Google Scholar 

  3. Renteria J, Legedza S, Salgado R, Balandin MP, Ramirez S, Saadah M, Kargar F, Balandin AA (2015) Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications. Mater Des 88:214–221

    Article  CAS  Google Scholar 

  4. Prasher RS, Chang JY, Sauciuc I, Narasimhan S, Chau D, Chrysler G, Myers A, Prstic S, Hu C (2005) Electronic package technology development. Intel Technol J 9:285–296

    Article  Google Scholar 

  5. Sarvar F, Whalley DC, Conway PP (2006) Thermal interface materials-a review of the state of the art, vol 2. 1st electronics systemintegration technology conference, pp 1292–1302. 2006

    Google Scholar 

  6. Prasher R (2006) Thermal interface materials: historical perspective, status, and future directions. Proc IEEE 94:1571–1586. 2006

    Article  CAS  Google Scholar 

  7. Garimella SV, Fleischer AS, Murthy JY, Keshavarzi A, Prasher R, Patel C, Bhavnani SH, Venkatasubramanian R, Mahajan R, Joshi Y, Sammakia B, Myers BA, Chorosinski L, Baelmans M, Sathyamurthy P, Raad PE (2008) Thermal challenges in next-generation electronic systems. IEEE Trans Components Packag Technol 31(4):801–815

    Article  Google Scholar 

  8. Balandin AA (2009) Better computing through CPU cooling. IEEE Spectr 29:33

    Google Scholar 

  9. Felba J (2010) Thermally conductive nanocomposites. In: Wong CP, Moon K-S, Li Y (eds) Nano-bio-electronic, photonic and MEMS packaging, 2nd edn. Springer US, Boston, pp 277–314

    Chapter  Google Scholar 

  10. Trew RJ, Green DS, Shealy JB (2009) AlGaN/GaN HFET reliability. IEEE Microw Mag 10:116–127

    Article  Google Scholar 

  11. Turin VO, Balandin AA (2006) Electro-thermal simulations of the self-heating effects in GaN-based field-effect transistors. J Appl Phys 100:054501

    Article  CAS  Google Scholar 

  12. Green DS, Vembu B, Hepper D, Gibb SR, Jin D, Vetury R, Shealy JB, Beechem LT, Graham S (2008) GaN HEMT thermal behavior and implications for reliability testing and analysis. Phys Status Solidi 5(6):2026–2029

    Article  CAS  Google Scholar 

  13. Schuller S, Schilinsky P, Hauch J, Brabec CJ (2004) Determination of the degradation constant of bulk heterojunction solar cells by accelerated lifetime measurements. Appl Phys A Mater Sci Process 79(1):37–40

    Article  CAS  Google Scholar 

  14. Tong XC (2011) Advanced materials for thermal management of electronic packaging. Springer Science & Business Media, New York

    Book  Google Scholar 

  15. Brinkworth BJ, Sandberg M (2006) Design procedure for cooling ducts to minimize efficiency loss due to temperature rise in PV arrays. Sol Energy 80(1):89–103

    Article  CAS  Google Scholar 

  16. Notton G, Cristofari C, Mattei M, Poggi P (2005) Modelling of a double-glass photovoltaic module using finite differences. Appl Therm Eng 25(17):2854–2877

    Article  CAS  Google Scholar 

  17. Siegal B (2010) Solar photovoltaic cell thermal measurement issues. In: Semiconductor thermal measurement and management symposium, 26th annual IEEE. IEEE, pp 132–135. 2010

    Google Scholar 

  18. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  19. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  CAS  Google Scholar 

  20. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581

    Article  CAS  Google Scholar 

  21. Ghosh S, Bao W, Nika DL, Subrina S, Pokatilov EP, Lau CN, Balandin AA (2010) Dimensional crossover of thermal transport in few-layer graphene. Nat Mater 9(7):555–558

    Article  CAS  Google Scholar 

  22. Nika DL, Pokatilov EP, Askerov AS, Balandin AA (2009) Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys Rev B 79(15):155413

    Article  CAS  Google Scholar 

  23. Xu X, Pereira LFC, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Bui CT, Xie R, Thong JTL, Hong BH, Loh KP, Donadio D, Li B, Özyilmaz B (2014) Length-dependent thermal conductivity in suspended single-layer graphene. Nat Commun 5:3689

    Article  CAS  Google Scholar 

  24. Shahil KMF, Balandin AA (2012) Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12:861–867

    Article  CAS  Google Scholar 

  25. Goyal V, Balandin AA (2012) Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials. Appl Phys Lett 100:073113

    Article  CAS  Google Scholar 

  26. Eda G, Chhowalla M (2009) Graphene-based composite thin films for electronics. Nano Lett 9(2):814–818

    Article  CAS  Google Scholar 

  27. Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7:1876–1902

    Article  CAS  Google Scholar 

  28. Wu ZS, Ren WC, Gao LB, Zhao JP, Chen ZP, Liu BL, Tang DM, Yu B, Jiang CB, Cheng HM (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS 3(2):411–417

    CAS  Google Scholar 

  29. Goli P, Legedza S, Dhar A, Salgado R, Renteria J, Balandin AA (2014) Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J Power Sources 248:37–43

    Article  CAS  Google Scholar 

  30. Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    Article  CAS  Google Scholar 

  31. Ho CY, Powell RW, Liley PEJ (1974) Phys Chem Ref Data 3(suppl. 1):1–30

    Google Scholar 

  32. Klemens PG, Pedraza DF (1994) Thermal conductivity of graphite in the basal plane. Carbon 32(4):735–741

    Article  CAS  Google Scholar 

  33. Nika DL, Askerov AS, Balandin AA (2012) Anomalous size dependence of the thermal conductivity of graphene ribbons. Nano Lett 12:3238–3244

    Article  CAS  Google Scholar 

  34. Nika DL, Pokatilov EP, Balandin AA (2011) Theoretical description of thermal transport in graphene: the issues of phonon cut-off frequencies and polarization branches. Phys Status Solidi B 248:2609–2614

    Article  CAS  Google Scholar 

  35. Klemens PGJ (2000) Theory of the a-plane thermal conductivity of graphite. Wide Bandgap Mater 7:332–339

    Article  CAS  Google Scholar 

  36. Nika DL, Balandin AA (2012) Two-dimensional phonon transport in graphene. J Phys Condens Matter 24:233203

    Article  CAS  Google Scholar 

  37. Klemens PG (1994) Phonon scattering and thermal resistance due to grain boundaries. Int J Thermophys 15(6):1345–1351

    Article  CAS  Google Scholar 

  38. Morelli DT, Slack GA (2006) High lattice thermal conductivity solids. In: Shinde SL, Goela JS (eds) High thermal conductivity materials. Springer, New York, pp 37–68

    Chapter  Google Scholar 

  39. Gonnet P, Liang Z, Choi ES, Kadambala RS, Zhang C, Brooks JS, Wang B, Kramer L (2006) Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites. Curr Appl Phys 6:119–122

    Article  Google Scholar 

  40. Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36:914–944

    Article  CAS  Google Scholar 

  41. Lindsay L, Broido DA, Mingo N (2010) Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit. Phys Rev B 82:161402

    Article  CAS  Google Scholar 

  42. Mei S, Maurer LN, Aksamija Z, Knezevic I (2014) Full-dispersion Monte Carlo simulation of phonon transport in micron-sized graphene nanoribbons. J Appl Phys 116:164307

    Article  CAS  Google Scholar 

  43. Fugallo G, Cepellotti A, Paulatto L, Lazzeri M, Marzari N, Mauri F (2014) Thermal conductivity of graphene and graphite: collective excitations and mean free paths. Nano Lett 14:6109–6114

    Article  CAS  Google Scholar 

  44. Cai W, Moore AL, Zhu Y, Li X, Chen S, Shi L, Ruoff R (2010) Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett 10:1645–1651

    Article  CAS  Google Scholar 

  45. Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff RS, Shi L (2010) Two-dimensional phonon transport in supported graphene. Science 328:213–216

    Article  CAS  Google Scholar 

  46. Renteria JD, Nika DL, Balandin AA (2014) Graphene thermal properties: applications in thermal management and energy storage. Appl Sci 4:525–547

    Article  Google Scholar 

  47. Yan Z, Nika DL, Balandin AA (2015) Thermal properties of graphene and few-layer graphene: applications in electronics. IET Circ Devices Syst 9:4–12

    Article  Google Scholar 

  48. Yan Z, Liu G, Khan JM, Balandin AA (2012) Graphene quilts for thermal management of high-power GaN transistors. Nat Commun 3:827

    Article  CAS  Google Scholar 

  49. Bae S-H, Shabani R, Lee J-B, Baeck S-J, Cho HJ, Ahn J-H (2014) Graphene-based heat spreader for flexible electronic devices. IEEE Trans Electron Devices 61:4171–4175

    Article  CAS  Google Scholar 

  50. Goli P, Ning H, Li X, Lu CY, Novoselov KS, Balandin AA (2014) Thermal properties of graphene–copper–graphene heterogeneous films. Nano Lett 14:1497–1503

    Article  CAS  Google Scholar 

  51. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  52. Gómez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7(11):3499

    Article  CAS  Google Scholar 

  53. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    Article  CAS  Google Scholar 

  54. Chen C, Yang Q-H, Yang Y, Lv W, Wen Y, Hou P-X, Wang M, Cheng H-M (2009) Self-assembled free-standing graphite oxide membrane. Adv Mater 21:3007–3011

    Article  CAS  Google Scholar 

  55. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  56. Tian L, Anilkumar P, Cao L, Kong CY, Meziani MJ, Qian H, Veca LM, Thorne TJ, Tackett KN, Edwards T, Sun Y-P (2011) Graphene oxides dispersing and hosting graphene sheets for unique nanocomposite materials. ACS Nano 5:3052–3058

    Article  CAS  Google Scholar 

  57. Kong CY, Song W-L, Meziani MJ, Tackett KN, Cao L, Farr AJ, Anderson A, Sun Y-P (2012) Supercritical fluid conversion of graphene oxides. J Supercrit Fluids 61:206–211

    Article  CAS  Google Scholar 

  58. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3(5):270–274

    Article  CAS  Google Scholar 

  59. Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M (2004) Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon 42:2929–2937

    CAS  Google Scholar 

  60. Stankovich S, Dikin DA, Piner RD, Kohlha KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  61. Botas C, Álvarez P, Blanco C, Santamaría R, Granda M, Gutiérrez MD, Rodríguez-Reinoso F, Menéndez R (2013) Critical temperatures in the synthesis of graphene-like materials by thermal exfoliation–reduction of graphite oxide. Carbon 52:476–485

    Article  CAS  Google Scholar 

  62. Kim KH, Yang M, Cho KM, Jun Y-S, Lee SB, Jung H-T (2013) High quality reduced graphene oxide through repairing with multi-layered graphene ball nanostructures. Sci Rep 3:3251

    Article  Google Scholar 

  63. Chuang C-H, Wang Y-F, Shao Y-C, Yeh Y-C, Wang D-Y, Chen C-W, Chiou JW, Ray SC, Pong WF, Zhang L, Zhu JF, Guo JH (2014) The effect of thermal reduction on the photoluminescence and electronic structures of graphene oxides. Sci Rep 4:4525

    Article  CAS  Google Scholar 

  64. Boutchich M, Jaffré A, Alamarguy D, Alvarez J, Barras A, Tanizawa Y, Tero R, Okada H, Thu TV, Kleider JP, Sandhu A (2013) Characterization of graphene oxide reduced through chemical and biological processes. J Phys Conf Ser 433:012001

    Article  CAS  Google Scholar 

  65. Barron AR, Bratt A (2010) XPS of carbon nanomaterials. Openstax CNX. http://cnx.org/content/m34549/1.2/. Accessed 16 Mar 2015

  66. Singh M, Yadav A, Kumar S, Agarwal P (2015) Annealing induced electrical conduction and band gap variation in thermally reduced graphene oxide films with different sp2/sp3 fraction. Appl Surf Sci 326:236–242

    Article  CAS  Google Scholar 

  67. Díez-Betriu X, Álvarez-García S, Botas C, Álvarez P, Sánchez-Marcos J, Prieto C, Menéndez R, de Andrés A (2013) Raman spectroscopy for the study of reduction mechanisms and optimization of conductivity in graphene oxide thin films. 2013. J Mater Chem C 1(41):6905–6912

    Article  CAS  Google Scholar 

  68. Zhou Y, Bao Q, Varghese B, Tang LAL, Tan CK, Sow C-H, Loh KP (2010) Microstructuring of graphene oxide nanosheets using direct laser writing. Adv Mater 22:67–71

    Article  CAS  Google Scholar 

  69. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA Jr, Ruoff RS (2009) Carbon 47:145–152

    Article  CAS  Google Scholar 

  70. Cuong TV, Pham VH, Tran QT, Hahn SH, Chung JS, Shin EW, Kim EJ (2010) Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide. Mater Lett 64:399–401

    Article  CAS  Google Scholar 

  71. Parker WJ, Jenkins RJ, Butler CP, Abbot GL (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 32:1679–1684

    Article  CAS  Google Scholar 

  72. Ikkawi R, Amos N, Lavrenov A, Krichevsky A, Teweldebrhan D, Ghosh S, Balandin AA, Litvinov D, Khizroev S (2008) Near-field optical transducer for heat-assisted magnetic recording for beyond-10-Tbit/in2 densities. J Nanoelectron Optoelectron 3:44–54

    Article  Google Scholar 

  73. Ghosh S, Teweldebrhan D, Morales JR, Garay JE, Balandin AA (2009) Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia. J Appl Phys 106:113507

    Article  CAS  Google Scholar 

  74. López V, Sundaram RS, Gómez-Navarro C, Olea D, Burghard M, Gómez-Herrero J, Zamora F, Kern K (2009) Chemical vapor deposition repair of graphene oxide: a route to highly-conductive graphene monolayers. Adv Mater 21:4683–4686

    Article  CAS  Google Scholar 

  75. Pei S, Zhao J, Du J, Ren W, Cheng H-M (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48:4466–4474

    Article  CAS  Google Scholar 

  76. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2:463–470

    Article  CAS  Google Scholar 

  77. Wei Z, Wang D, Kim S, Kim S-Y, Hu Y, Yakes MK, Laracuente AR, Dai Z, Marder SR, Berger C, King WP, de Heer WA, Sheehan PE, Riedo E (2010) Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328:1373–1376

    Article  CAS  Google Scholar 

  78. Qiu T, Luo B, Liang M, Ning J, Wang B, Li X, Zhi L (2014) Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices. Carbon 81:232–238

    Article  CAS  Google Scholar 

  79. Cocemasov AI, Nika DL, Balandin AA (2013) Phonons in twisted bilayer graphene. Phys Rev B 88:035428

    Article  CAS  Google Scholar 

  80. Nika DL, Cocemasov AI, Balandin AA (2014) Specific heat of twisted bilayer graphene: engineering phonons by atomic plane rotations. Appl Phys Lett 105:031904

    Article  CAS  Google Scholar 

  81. Nika DL, Ghosh S, Pokatilov EP, Balandin AA (2009) Lattice thermal conductivity of graphene flakes: comparison with bulk graphite. Appl Phys Lett 94:2030103

    Article  CAS  Google Scholar 

  82. Aksamija Z, Knezevic I (2011) Lattice thermal conductivity of graphene nanoribbons: anisotropy and edge roughness scattering. Appl Phys Lett 98:141919

    Article  CAS  Google Scholar 

  83. Huang PY, Ruiz-Vargas CS, van der Zande AM, Whitney WS, Levendorf MP, Kevek JW, Garg S, Alden JS, Hustedt CJ, Zhu Y, Park J, McEuen PL, Muller DA (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469:389–392

    Article  CAS  Google Scholar 

  84. Park S, Floresca HC, Suh Y, Kim MJ (2010) Electron microscopy analyses of natural and highly oriented pyrolytic graphites and the mechanically exfoliated graphenes produced from them. Carbon 48:797–804

    Article  CAS  Google Scholar 

  85. Lee JH, Lee SH, Choi CJ, Jang SP, Choi SUS (2010) Int J Micro Nanoscale Transp 4:269–322

    Article  Google Scholar 

  86. Shahil KMF, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun 152:1331–1340

    Article  CAS  Google Scholar 

  87. Fu Y-X, He Z-X, Mo D-C, Lu S-S (2014) Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives. Int J Therm Sci 86:276–283

    Article  CAS  Google Scholar 

  88. Mahanta NK, Loos MR, Zlocozower IM, Abramson AR (2015) Graphite–graphene hybrid filler system for high thermal conductivity of epoxy composites. J Mater Res 30:959–966

    Article  CAS  Google Scholar 

  89. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401

    Article  CAS  Google Scholar 

  90. Gulotty R, Castellino M, Jagdale P, Tagliaferro A, Balandin AA (2013) Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube–polymer nanocomposites. ACS Nano 7:5114–5121

    Article  CAS  Google Scholar 

  91. Konatham D, Bui KND, Papavassiliou DV, Striolo A (2011) Simulation insights into thermally conductive graphene-based nanocomposites. Mol Phys 109:97–111

    Article  CAS  Google Scholar 

  92. Konatham D, Striolo A (2009) Thermal boundary resistance at the graphene-oil interface. Appl Phys Lett 95:48–51

    Article  CAS  Google Scholar 

  93. Liu J, Michel B, Rencz M, Tantolin C, Sarno C, Miessner R, Schuett KV, Tang X, Demoustier S, Ziaei A. Recent progress of thermal interface material research-an overview. In: Thermal investigation of ICs and systems, THERMINIC 2008, IEEE, Rome, pp 156–162

    Google Scholar 

  94. Xu J, Fisher TS (2006) Enhancement of thermal interface materials with carbon nanotube arrays. Int J Heat Mass Transf 49:1658–1666

    Article  CAS  Google Scholar 

  95. Cola BA, Xu X, Fisher TS (2007) Increased real contact in thermal interfaces: a carbon nanotube/foil material. Appl Phys Lett 90:88–91

    Article  CAS  Google Scholar 

  96. Ganguli S, Sihn S, Roy AK, Dai L, Qu L (2009) Metalized nanotube tips improve through thickness thermal conductivity in adhesive joints. J Nanosci Nanotechnol 9:1727–1733

    Article  CAS  Google Scholar 

  97. Ganguli S, Roy AK, Wheeler R, Varshney V, Du F, Dai L (2012) Superior thermal interface via vertically aligned carbon nanotubes grown on graphite foils. J Mater Res 28:933–939

    Article  CAS  Google Scholar 

  98. Tong T, Zhao Y, Delzeit L, Kashani A, Meyyappan M, Majumdar A (2007) Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials. IEEE Trans Components Packag Technol 30:92–100

    Article  CAS  Google Scholar 

  99. Zhang K, Chai Y, Yuen MMF, Xiao DGW, Chan PCH (2008) Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling. Nanotechnology 19:215706

    Article  CAS  Google Scholar 

  100. Lin W, Moon K-S, Wong CPA (2009) Combined process of in situ functionalization and microwave treatment to achieve ultrasmall thermal expansion of aligned carbon nanotube-polymer nanocomposites: toward applications as thermal interface materials. Adv Mater 21:2421–2424

    Article  CAS  Google Scholar 

  101. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568

    Article  CAS  Google Scholar 

  102. Green AA, Hersam MC (2009) Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett 9:4031–4036

    Article  CAS  Google Scholar 

  103. Fu L, Liu Z, Liu Y, Han B, Wang J, Hu P, Cao L, Zhu D (2004) Coating carbon nanotubes with rare earth oxide multiwalled nanotubes. Adv Mater 16:350–352

    Article  CAS  Google Scholar 

  104. Correa-Duarte MA, Grzelczak M, Salgueiriño-Maceira V, Giersig M, Liz-Marzán LM, Farle M, Sierazdki K, Diaz R (2005) Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles. J Phys Chem B 109:19060–19063

    Article  CAS  Google Scholar 

  105. Jiang L, Gao L (2003) Carbon nanotubes – magnetite nanocomposites from solvothermal processes: formation, characterization and enhanced electrical properties. Chem Mater 15(14):2848–2853

    Article  CAS  Google Scholar 

  106. Kotov NA, Dekany I, Fendler JH (1995) Layer-by-layer self-asembly of polyelectrolyte-semiconductor nanoparticle composite films. J Phys Chem 99:13065–13069

    Article  CAS  Google Scholar 

  107. Cassagneau T, Mallouk TE, Fendler JH (1998) Layer-by-layer assembly of thin film zener diodes from conducting polymers and CdSe nanoparticles. J Am Chem Soc 120:7848–7859

    Article  CAS  Google Scholar 

  108. Caruso F, Caruso RA, Möhwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282:1111–1114

    Article  CAS  Google Scholar 

  109. Correa-Duarte MA, Sobal N, Liz-Marzán LM, Giersig M (2004) Linear assemblies of silica-coated gold nanoparticles using carbon nanotubes as templates. Adv Mater 16:2179–2184

    Article  CAS  Google Scholar 

  110. O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342:265–271

    Article  Google Scholar 

  111. Casavant MJ, Walters DA, Schmidt JJ, Smalley RE (2003) Neat macroscopic membranes of aligned carbon nanotubes. J Appl Phys 93:2153–2156

    Article  CAS  Google Scholar 

  112. Garmestani H, Al-Haik MS, Dahmen K, Tannenbaum R, Li D, Sablin SS, Hussaini MY (2003) Polymer-mediated alignment of carbon nanotubes under high magnetic fields. Adv Mater 15:1918–1921

    Article  CAS  Google Scholar 

  113. Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM (1998) Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394:52–55

    Article  CAS  Google Scholar 

  114. Yu R, Chen L, Liu Q, Lin J, Tan K-L, Ng SC, Chan HSO, Xu G-Q, Hor TSA (1998) Platinum deposition on carbon nanotubes via chemical modification. Chem Mater 10:718–722

    Article  CAS  Google Scholar 

  115. Ostrander JW, Mamedov AA, Kotov NA (2001) Two modes of linear layer-by-layer growth of nanoparticle-polylectrolyte multilayers and different interactions in the layer-by-layer deposition. J Am Chem Soc 123:1101–1110

    Article  CAS  Google Scholar 

  116. Spasova M, Salgueiriño-Maceira V, Schlachter A, Hilgendorff M, Giersig M, Liz-Marzán LM, Farle M (2005) Magnetic and optical tunable microspheres with a magnetite/gold nanoparticle shell. J Mater Chem 15:2095–2098

    Article  CAS  Google Scholar 

  117. Poudyal N, Liu JP (2012) Advances in nanostructured permanent magnets research. J Phys D Appl Phys 46:43001

    Article  CAS  Google Scholar 

  118. Kuzmin MD, Skokov KP, Jian H, Radulov I, Gutfleisch O (2014) Towards high-performance permanent magnets without rare earths. J Phys Condens Matter 26:064205

    Article  CAS  Google Scholar 

  119. Cahill DG, Watson SK, Pohl RO (1992) Lower limit to the thermal conductivity of disordered crystals. Phys Rev B 46:6131

    Article  CAS  Google Scholar 

  120. Chiritescu C, Cahill DG, Nguyen N, Johnson D, Bodapati A, Keblinski P, Zschack P (2007) Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 315:351–353

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Balandin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malekpour, H., Balandin, A.A. (2018). Graphene Applications in Advanced Thermal Management. In: Morris, J. (eds) Nanopackaging. Springer, Cham. https://doi.org/10.1007/978-3-319-90362-0_27

Download citation

Publish with us

Policies and ethics