Skip to main content
Log in

Comparison of commercial silicon-based anode materials for the design of a high-energy lithium-ion battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Silicon (Si) is considered a potential alternative anode for next-generation Li-ion batteries owing to its high theoretical capacity and abundance. However, the commercial use of Si anodes is hindered by their large volume expansion (∼ 300%). Numerous efforts have been made to address this issue. Among these efforts, Si-graphite co-utilization has attracted attention as a reasonable alternative for high-energy anodes. A comparative study of representative commercial Si-based materials, such as Si nanoparticles, Si suboxides, and Si–Graphite composites (SiGC), was conducted to characterize their overall performance in high-energy lithium-ion battery (LIB) design by incorporating conventional graphite. Nano-Si was found to exhibit poor electrochemical performance, with severe volume expansion during cycling. Si suboxide provided excellent cycling stability in a full-cell evaluation with stable volume variation after 50 cycles, but had a large irreversible capacity and remarkable volume expansion during the first cycle. SiGC displayed a good initial Coulombic efficiency and the lowest volume change in the first cycle owing to the uniformly distributed nano-Si layer on graphite; however, its long-term cycling stability was relatively poor. To complement each disadvantage of Si suboxide and SiGC, a new combination of these Si-based anodes was suggested and a reasonable improvement in overall battery performance was successfully achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.

    Article  ADS  CAS  Google Scholar 

  2. Jiang, M. M.; Chen, J. L.; Zhang, Y. B.; Song, N.; Jiang, W.; Yang, J. P. Assembly: A key enabler for the construction of superior silicon-based anodes. Adv. Sci. 2022, 9, 2203162.

    Article  CAS  Google Scholar 

  3. Ko, M.; Chae, S.; Cho, J. Challenges in accommodating volume change of Si anodes for Li-Ion batteries. ChemElectroChem 2015, 2, 1645–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, W. J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 2011, 196, 13–24.

    Article  ADS  CAS  Google Scholar 

  5. Kim, H.; Han, B.; Choo, J.; Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. 2008, 120, 10305–10308.

    Article  ADS  Google Scholar 

  6. Shi, F. F.; Song, Z. C.; Ross, P. N.; Somorjai, G. A.; Ritchie, R. O.; Komvopoulos, K. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries. Nat. Commun. 2016, 7, 11886.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. McDowell, M. T.; Lee, S. W.; Nix, W. D.; Cui, Y. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 2013, 25, 4966–4985.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, F. Z.; Ma, Y. Y.; Jiang, M. M.; Luo, W.; Yang, J. P. Boron heteroatom-doped silicon-carbon peanut-like composites enables long life lithium-ion batteries. Rare Met. 2022, 41, 1276–1283.

    Article  CAS  Google Scholar 

  9. Lin, D. C.; Lu, Z. D.; Hsu, P. C.; Lee, H. R.; Liu, N.; Zhao, J.; Wang, H. T.; Liu, C.; Cui, Y. A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithiumion batteries. Energy Environ. Sci. 2015, 8, 2371–2376.

    Article  CAS  Google Scholar 

  10. Li, P.; Kim, H.; Myung, S. T.; Sun, Y. K. Diverting exploration of silicon anode into practical way: A review focused on silicongraphite composite for lithium ion batteries. Energy Storage Mater. 2021, 35, 550–576.

    Article  Google Scholar 

  11. Yang, Y. J.; Wu, S. X.; Zhang, Y. P.; Liu, C. B.; Wei, X. J.; Luo, D.; Lin, Z. Towards efficient binders for silicon based lithium-ion battery anodes. Chem. Eng. J. 2021, 406, 126807.

    Article  CAS  Google Scholar 

  12. Son, Y.; Sim, S.; Ma, H.; Choi, M.; Son, Y.; Park, N.; Cho, J.; Park, M. Exploring critical factors affecting strain distribution in 1D silicon-based nanostructures for lithium-ion battery anodes. Adv. Mater. 2018, 30, 1705430.

    Article  Google Scholar 

  13. Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315.

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Chen, H.; Wu, Z. Z.; Su, Z.; Chen, S.; Yan, C.; Al-Mamun, M.; Tang, Y. B.; Zhang, S. Q. A mechanically robust self-healing binder for silicon anode in lithium ion batteries. Nano Energy 2021, 81, 105654.

    Article  CAS  Google Scholar 

  15. Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Huang, X.; Yu, H.; Chen, J.; Lu, Z. Y.; Yazami, R.; Hng, H. H. Ultrahigh rate capabilities of lithium-ion batteries from 3D ordered hierarchically porous electrodes with entrapped active nanoparticles configuration. Adv. Mater. 2014, 26, 1296–1303.

    Article  CAS  PubMed  Google Scholar 

  17. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Son, Y.; Kim, N.; Lee, T.; Lee, Y.; Ma, J.; Chae, S.; Sung, J.; Cha, H.; Yoo, Y.; Cho, J. Calendering-compatible macroporous architecture for silicon-graphite composite toward high-energy lithium-ion batteries. Adv. Mater. 2020, 32, 2003286.

    Article  Google Scholar 

  19. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Article  ADS  PubMed  Google Scholar 

  20. Zhu, G. J.; Guo, R.; Luo, W.; Liu, H. K.; Jiang, W.; Dou, S. X.; Yang, J. P. Boron doping-induced interconnected assembly approach for mesoporous silicon oxycarbide architecture. Natl. Sci. Rev. 2021, 8, nwaa152.

    Article  CAS  PubMed  Google Scholar 

  21. Jia, H. P.; Li, X. L.; Song, J. H.; Zhang, X.; Luo, L. L.; He, Y.; Li, B. S.; Cai, Y.; Hu, S. Y.; Xiao, X. C. et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nat. Commun. 2020, 11, 1474.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu, Q.; Sun, J. K.; Yin, Y. X.; Guo, Y. G. Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes. Adv. Funct. Mater. 2018, 28, 1705235.

    Article  Google Scholar 

  23. Sung, J.; Ma, J.; Choi, S. H.; Hong, J.; Kim, N.; Chae, S.; Son, Y.; Kim, S. Y.; Cho, J. Fabrication of lamellar nanosphere structure for effective stress-management in large-volume-variation anodes of high-energy lithium-ion batteries. Adv. Mater. 2019, 31, 1900970.

    Article  Google Scholar 

  24. Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The success story of graphite as a lithium-ion anode material - fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 2020, 4, 5387–5416.

    Article  CAS  Google Scholar 

  25. Wang, J.; Zhao, H. L.; He, J. C.; Wang, C. M.; Wang, J. Nano-sized SiOx/C composite anode for lithium ion batteries. J. Power Sources 2011, 196, 4811–4815.

    Article  ADS  CAS  Google Scholar 

  26. Chen, T.; Wu, J.; Zhang, Q. L.; Su, X. Recent advancement of SiOx based anodes for lithium-ion batteries. J. Power Sources 2017, 363, 126–144.

    Article  ADS  CAS  Google Scholar 

  27. Lee, S. J.; Kim, H. J.; Hwang, T. H.; Choi, S.; Park, S. H.; Deniz, E.; Jung, D. S.; Choi, J. W. Delicate structural control of Si-SiOx-C composite via high-speed spray pyrolysis for Li-Ion battery anodes. Nano Lett. 2017, 17, 1870–1876.

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Chae, S.; Ko, M.; Park, S.; Kim, N.; Ma, J.; Cho, J. Micron-sized Fe-Cu-Si ternary composite anodes for high energy Li-ion batteries. Energy Environ. Sci. 2016, 9, 1251–1257.

    Article  CAS  Google Scholar 

  29. Miyachi, M.; Yamamoto, H.; Kawai, H.; Ohta, T.; Shirakata, M. Analysis of SiO anodes for lithium-ion batteries. J. Electrochem. Soc. 2005, 152, A2089.

    Article  CAS  Google Scholar 

  30. Ko, M.; Chae, S.; Ma, J.; Kim, N.; Lee, H. W.; Cui, Y.; Cho, J. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat. Energy 2016, 1, 16113.

    Article  ADS  CAS  Google Scholar 

  31. Chae, S.; Kim, N.; Ma, J.; Cho, J.; Ko, M. One-to-one comparison of graphite-blended negative electrodes using silicon nanolayer-embedded graphite versus commercial benchmarking materials for high-energy lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1700071.

    Article  Google Scholar 

  32. Chae, S.; Choi, S. H.; Kim, N.; Sung, J.; Cho, J. Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 110–135.

    Article  CAS  Google Scholar 

  33. Kim, N.; Chae, S.; Ma, J.; Ko, M.; Cho, J. Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nat. Commun. 2017, 8, 812.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  34. Shrestha, S.; Wang, B.; Dutta, P. Nanoparticle processing: Understanding and controlling aggregation. Adv. Colloid Interface Sci. 2020, 279, 102162.

    Article  CAS  PubMed  Google Scholar 

  35. Chae, S.; Ko, M.; Kim, K.; Ahn, K.; Cho, J. Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule 2017, 7, 47–60.

    Article  Google Scholar 

  36. Li, Z. H.; Zhang, Y. P.; Liu, T. F.; Gao, X. H.; Li, S. Y.; Ling, M.; Liang, C. D.; Zheng, J. C.; Lin, Z. Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries. Adv. Energy Mater. 2020, 10, 1903110.

    Article  ADS  CAS  Google Scholar 

  37. Liu, Q.; Meng, T.; Yu, L.; Guo, S. T.; Hu, Y. H.; Liu, Z. F.; Hu, X. L. Interface engineering to boost thermal safety of microsized silicon anodes in lithium-ion batteries. Small Methods 2022, 6, 2200380.

    Article  CAS  Google Scholar 

  38. Lee, J. H.; Kim, W. J.; Kim, J. Y.; Lim, S. H.; Lee, S. M. Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries. J. Power Sources 2008, 176, 353–358.

    Article  ADS  CAS  Google Scholar 

  39. Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 2012, 6, 1522–1531.

    Article  ADS  CAS  PubMed  Google Scholar 

  40. He, Y.; Jiang, L.; Chen, T. W.; Xu, Y. B.; Jia, H. P.; Yi, R.; Xue, D. C.; Song, M.; Genc, A.; Bouchet-Marquis, C. et al. Progressive growth of the solid-electrolyte interphase towards the Si anode interior causes capacity fading. Nat. Nanotechnol. 2021, 16, 1113–1120.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (No. 20010542, Development of Petroleum Pitch Based Conductive Material and Binder for Lithium Ion Secondary Battery and Their Application) funded by the Ministry of Trade, Industry & Energy (MOTIE, Republic of Korea) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C1095408).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Namhyung Kim or Minseong Ko.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, M., Lee, E., Sung, J. et al. Comparison of commercial silicon-based anode materials for the design of a high-energy lithium-ion battery. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6512-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6512-x

Keywords

Navigation