Skip to main content
Log in

Liquid-mediated Ostwald ripening of Ag-based clusters supported on oxides

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Reconstruction of supported nanocatalysts often occurs in gas–solid reactions and significantly affects the catalytic performance, yet it is much less explored in liquid-phase environment. Herein, we find that highly-dispersed Ag nanocatalysts, i.e., AgOx clusters, supported on alumina, silica, and titania, can aggregate into larger Ag or Ag2O particles after immersing in liquid-phase media at room temperature. The spontaneous aggregation of AgOx clusters in liquid water is attributed to liquid-phase Ostwald ripening through dissolution of AgOx clusters into water and subsequent redeposition to form Ag2O particles. The immersion into organic solvents such as ethanol leads to reduction of AgOx clusters and further growth into Ag particles. This work reveals that liquid-phase reaction media can induce substantial structural evolution of supported nanostructured catalysts, which should be carefully considered in liquid–solid interface catalytic reactions such as electrocatalysis, environmental catalysis, and organic synthesis in liquid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strizhak, P. E. Nanosize effects in heterogeneous catalysis. Theor. Exp. Chem. 2013, 49, 2–21.

    Article  CAS  Google Scholar 

  2. Cao, S. W.; Tao, F.; Tang, Y.; Li, Y. T.; Yu, J. G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016, 45, 4747–4765.

    Article  CAS  PubMed  Google Scholar 

  3. Tanabe, T.; Nagai, Y.; Dohmae, K.; Sobukawa, H.; Shinjoh, H. Sintering and redispersion behavior of Pt on Pt/MgO. J. Catal. 2008, 257, 117–124.

    Article  CAS  Google Scholar 

  4. Che, M.; Bennett, C. O. The influence of particle size on the catalytic properties of supported metals. Adv. Catal. 1989, 36, 55–172.

    Article  CAS  Google Scholar 

  5. Piccolo, L. Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis. Catal. Today 2021, 373, 80–97.

    Article  CAS  Google Scholar 

  6. Liu, C. H.; Li, R. T.; Wang, F.; Li, K.; Fan, Y. M.; Mu, R. T.; Fu, Q. Water promoted structural evolution of Ag nanocatalysts supported on alumina. Nano Res. 2023, 16, 9107–9115.

    Article  CAS  Google Scholar 

  7. Plessow, P. N.; Abild-Pedersen, F. Sintering of Pt nanoparticles via volatile PtO2: Simulation and comparison with experiments. ACS Catal. 2016, 6, 7098–7108.

    Article  CAS  Google Scholar 

  8. Argyle, M. D.; Bartholomew, C. H. Heterogeneous catalyst deactivation and regeneration: A review. Catalysts 2015, 5, 145–269.

    Article  CAS  Google Scholar 

  9. Yan, D. X.; Chen, J.; Jia, H. P. Tempeaatuee-induced structure reconstruction to prepare a thermally stable single-atom platinum catalyst. Angew. Chem., Int. Ed. 2020, 59, 13562–13567.

    Article  CAS  Google Scholar 

  10. Huang, W. X.; Johnston-Peck, A. C.; Wolter, T.; Yang, W. C. D.; Xu, L.; Oh, J.; Reeves, B. A.; Zhou, C. S.; Holtz, M. E.; Herzing, A. A. et al. Steam-created grain boundaries for methane C–H activation in palladium catalysts. Science 2021, 373, 1518–1523.

    Article  CAS  PubMed  Google Scholar 

  11. Dong, J. H.; Fu, Q.; Li, H. B.; Xiao, J. P.; Yang, B.; Zhang, B. S.; Bai, Y. X.; Song, T. Y.; Zhang, R. K.; Gao, L. J. et al. Reaction-induced strong metal-support interactions between metals and inert boron nitride nanosheets. J. Am. Chem. Soc. 2020, 142, 17167–17174.

    Article  CAS  PubMed  Google Scholar 

  12. Jeong, H.; Shin, D.; Kim, B. S.; Bae, J.; Shin, S.; Choe, C.; Han, J. W.; Lee, H. Controlling the oxidation state of Pt single atoms for maximizing catalytic activity. Angew. Chem., Int. Ed. 2020, 59, 20691–20696.

    Article  CAS  Google Scholar 

  13. Zhu, J.; Wang, P.; Zhang, X. B.; Zhang, G. H.; Li, R. T.; Li, W. H.; Senftle, T. P.; Liu, W.; Wang, J. Y.; Wang, Y. L. et al. Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO2 hydrogenation. Sci. Adv. 2022, 8, eabm3629.

    Article  Google Scholar 

  14. Parkinson, G. S.; Novotny, Z.; Argentero, G.; Schmid, M.; Pavelec, J.; Kosak, R.; Blaha, P.; Diebold, U. Carbon monoxide-induced adatom sintering in a Pd-Fe3O4 model catalyst. Nat. Mater. 2013, 12, 724–728.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, M. R.; Wang, P.; Zhang, G. H.; Cheng, Z.; Zhang, M. M.; Liu, Y. L.; Li, R. T.; Zhu, J.; Wang, J. Y.; Bian, K. et al. Stabilizing Co2C with H2O and K promoter for CO2 hydrogenation to C2+ hydrocarbons. Sci. Adv. 2023, 9, eadg0167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Besson, M.; Gallezot, P. Deactivation of metal catalysts in liquid phase organic reactions. Catal. Today 2003, 81, 547–559.

    Article  CAS  Google Scholar 

  17. Gallezot, P.; Cerino, P. J.; Blanc, B.; Flèche, G.; Fuertes, P. Glucose hydrogenation on promoted raney-nickel catalysts. J. Catal. 1994, 146, 93–102.

    Article  CAS  Google Scholar 

  18. Besson, M.; Gallezot, P. Selective oxidation of alcohols and aldehydes on metal catalysts. Catal. Today 2000, 57, 127–141.

    Article  CAS  Google Scholar 

  19. Ravenelle, R. M.; Copeland, J. R.; Kim, W. G.; Crittenden, J. C.; Sievers, C. Structural changes of γ-Al2O3-supported catalysts in hot liquid water. ACS Catal. 2011, 1, 552–561.

    Article  CAS  Google Scholar 

  20. Harsányi, G. Irregular effect of chloride impurities on migration failure reliability: Contradictions or understandable. Microelectron. Reliab. 1999, 39, 1407–1411.

    Article  Google Scholar 

  21. Bañuelos, J. L.; Borguet, E.; Brown, G. E., Jr.; Cygan, R. T.; DeYoreo, J. J.; Dove, P. M.; Gaigeot, M. P.; Geiger, F. M.; Gibbs, J. M.; Grassian, V. H. et al. Oxide- and silicate-water interfaces and their roles in technology and the environment. Chem. Rev. 2023, 123, 6413–6544.

    Article  PubMed  Google Scholar 

  22. Ritzer, B.; Villegas, M. A.; Fernández Navarro, J. M. Influence of temperature and time on the stability of silver in silica sol-gel glasses. J. Sol-Gel Sci. Technol. 1997, 8, 917–921.

    Article  CAS  Google Scholar 

  23. Liu, J. Y.; Hurt, R. H. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 2010, 44, 2169–2175.

    Article  CAS  PubMed  Google Scholar 

  24. Mallat, T.; Bodnar, Z.; Hug, P.; Baiker, A. Selective oxidation of cinnamyl alcohol to cinnamaldehyde with air over Bi-Pt/alumina catalysts. J. Catal. 1995, 153, 131–143.

    Article  CAS  Google Scholar 

  25. Glover, R. D.; Miller, J. M.; Hutchison, J. E. Generation of metal nanoparticles from silver and copper objects: Nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 2011, 5, 8950–8957.

    Article  CAS  PubMed  Google Scholar 

  26. Valdés, Á.; Qu, Z. W.; Kroes, G. J.; Rossmeisl, J.; Nerskov, J. K. Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C 2008, 112, 9872–9879.

    Article  Google Scholar 

  27. Wang, F.; Ma, J. Z.; Xin, S. H.; Wang, Q.; Xu, J.; Zhang, C. B.; He, H.; Zeng, X. C. Resolving the puzzle of single-atom silver dispersion on nanosized γ-Al2O3 surface for high catalytic performance. Nat. Commun. 2020, 11, 529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, R. T.; Xu, X. Y.; Zhu, B. E.; Li, X. Y.; Ning, Y. X.; Mu, R. T.; Du, P. F.; Li, M. W.; Wang, H. K.; Liang, J. J. et al. In situ identification of the metallic state of Ag nanoclusters in oxidative dispersion. Nat. Commun. 2021, 12, 1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fan, Y. M.; Wang, F.; Li, R. T.; Liu, C. H.; Fu, Q. Surface hydroxyl-determined migration and anchoring of silver on alumina in oxidative redispersion. ACS Catal. 2023, 13, 2277–2285.

    Article  CAS  Google Scholar 

  30. Huang, Z. W.; Gu, X.; Cao, Q. Q.; Hu, P. P.; Hao, J. M.; Li, J. H.; Tang, X. F. Catalytically active single-atom sites fabricated from silver particles. Angew. Chem., Int. Ed. 2012, 51, 4198–4203.

    Article  CAS  Google Scholar 

  31. Schön, G. ESCA studies of Ag, Ag2O and AgO. Acta Chem. Scand. 1973, 27, 2623–2633.

    Article  Google Scholar 

  32. Moretti, G. The Wagner plot and the Auger parameter as tools to separate initial- and final-state contributions in X-ray photoemission spectroscopy. Surf. Sci. 2013, 618, 3–11.

    Article  CAS  Google Scholar 

  33. Aspromonte, S. G.; Mizrahi, M. D.; Schneeberger, F. A.; López, J. M. R.; Boix, A. V. Study of the nature and location of silver in Ag-exchanged mordenite catalysts. Characterization by spectroscopic techniques. J. Phys. Chem. C 2013, 117, 25433–25442.

    Article  CAS  Google Scholar 

  34. Wagner, C. D. Auger parameter in electron spectroscopy for the identification of chemical species. Anal. Chem. 1975, 47, 1201–1203.

    Article  CAS  Google Scholar 

  35. German, R. M. Coarsening in sintering: Grain shape distribution, grain size distribution, and grain growth kinetics in solid-pore systems. Crit. Rev. Solid State Mater. Sci. 2010, 35, 263–305.

    Article  CAS  Google Scholar 

  36. Meijerink, M. J.; de Jong, K. P.; Zečević, J. Growth of supported gold nanoparticles in aqueous phase studied by in situ transmission electron microscopy. J. Phys. Chem. C 2019, 124, 2202–2212.

    Article  Google Scholar 

  37. Khelfa, A.; Nelayah, J.; Amara, H.; Wang, G.; Ricolleau, C.; Alloyeau, D. Quantitative in situ visualization of thermal effects on the formation of gold nanocrystals in solution. Adv. Mater. 2021, 33, 2102514.

    Article  CAS  Google Scholar 

  38. Wang, F.; Li, Z.; Wang, H. H.; Chen, M.; Zhang, C. B.; Ning, P.; He, H. Nano-sized Ag rather than single-atom Ag determines CO oxidation activity and stability. Nano Res. 2022, 15, 452–456.

    Article  CAS  Google Scholar 

  39. Lamoth, M.; Plodinec, M.; Scharfenberg, L.; Wrabetz, S.; Girgsdies, F.; Jones, T.; Rosowski, F.; Horn, R.; Schlogl, R.; Frei, E. Supported Ag Nanoparticles and clusters for CO oxidation: Size effects and influence of the silver–oxygen interactions. ACS Appl. Nano Mater. 2019, 2, 2909–2920.

    Article  CAS  Google Scholar 

  40. Piwoński, I.; Spilarewicz-Stanek, K.; Kisielewska, A.; Kądzioła, K.; Cichomski, M.; Ginter, J. Examination of Ostwald ripening in the photocatalytic growth of silver nanoparticles on titanium dioxide coatings. Appl. Surf. Sci. 2016, 373, 38–44.

    Article  Google Scholar 

  41. Simonsen, S. B.; Chorkendorff, I.; Dahl, S.; Skoglundh, M.; Sehested, J.; Helveg, S. Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. J. Am. Chem. Soc. 2010, 132, 7968–7975.

    Article  CAS  PubMed  Google Scholar 

  42. Yang, J. Y.; Huang, Y. K.; Qi, H. F.; Zeng, C. B.; Jiang, Q. K.; Cui, Y. T.; Su, Y.; Du, X. R.; Pan, X. L.; Liu, X. Y. et al. Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration. Nat. Commun. 2022, 13, 4244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Childs, W. R.; Motala, M. J.; Lee, K. J.; Nuzzo, R. G. Masterless soft lithography: Patterning UV/ozone-induced adhesion on poly(dimethylsiloxane) surfaces. Langmuir 2005, 21, 10096–10105.

    Article  CAS  PubMed  Google Scholar 

  44. Lee, J. S.; Yu, J. H. Diffusion-controlled grain growth in liquid-phase sintering of W-Cu nanocomposites. Int. J. Mater. Res. 2001, 92, 663–668.

    Article  CAS  Google Scholar 

  45. Zhang, D. S.; Liu, J.; Liang, C. H. Perspective on how laser-ablated particles grow in liquids. Sci. China Phys. Mech. Astron. 2017, 60, 074201.

    Article  Google Scholar 

  46. Hermannsdörfer, J.; de Jonge, N.; Verch, A. Electron beam induced chemistry of gold nanoparticles in saline solution. Chem. Commun. 2015, 51, 16393–16396.

    Article  Google Scholar 

  47. Qu, Z. P.; Huang, W. X.; Zhou, S. T.; Zheng, H.; Liu, X. M.; Cheng, M. J.; Bao, X. H. Enhancement of the catalytic performance of supported-metal catalysts by pretreatment of the support. J. Catal. 2005, 234, 33–36.

    Article  CAS  Google Scholar 

  48. Menezes, W. G.; Neumann, B.; Zielasek, V.; Thiel, K.; Bäumer, M. Bimetallic AuAg nanoparticles: Enhancing the catalytic activity of Au for reduction reactions in the liquid phase by addition of Ag. ChemPhysChem 2013, 14, 1577–1581.

    Article  CAS  PubMed  Google Scholar 

  49. Kahri, H.; Sevim, M.; Metin, Ö. Enhanced catalytic activity of monodispersed AgPd alloy nanoparticles assembled on mesoporous graphitic carbon nitride for the hydrolytic dehydrogenation of ammonia borane under sunlight. Nano Res. 2017, 10, 1627–1640.

    Article  CAS  Google Scholar 

  50. Hansen, T. W.; DeLariva, A. T.; Challa, S. R.; Datye, A. K. Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening. Acc. Chem. Res. 2013, 46, 1720–1730.

    Article  CAS  PubMed  Google Scholar 

  51. Goodman, E. D.; Carlson, E. Z.; Dietze, E. M.; Tahsini, N.; Johnson, A.; Aitbekova, A.; Nguyen Taylor, T.; Plessow, P. N.; Cargnello, M. Size-controlled nanocrystals reveal spatial dependence and severity of nanoparticle coalescence and Ostwald ripening in sintering phenomena. Nanoscale 2021, 13, 930–938.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key Research and Development Program of China (Nos. 2021YFA1502800, 2022YFA1504800, and 2022YFA1504500), the National Natural Science Foundation of China (Nos. 21825203, 22288201, 22332006, and 22321002), Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB0600300), the Fundamental Research Funds for the Central Universities (No. 20720220009), and Photon Science Center for Carbon Neutrality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Fu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, R., Fan, Y. et al. Liquid-mediated Ostwald ripening of Ag-based clusters supported on oxides. Nano Res. 17, 4971–4978 (2024). https://doi.org/10.1007/s12274-024-6503-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6503-y

Keywords

Navigation