Skip to main content
Log in

Synthesis of hollow Fe3O4 particles via one-step solvothermal approach for microwave absorption materials: effect of reactant concentration, reaction temperature and reaction time

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hollow Fe3O4 particles with variable crystal sizes were synthesized by one-step solvothermal method for lightweight and efficient microwave absorber applications. The reactant concentration, reaction temperature and reaction time are three key factors for morphology control of the products and can further influence the microwave absorption properties. The diameters of as-prepared hollow magnetite particles ranged from 200 to 1000 nm, while the shell thickness differed from 35 to 280 nm. It is found that the microwave absorption properties are improved along with the increasing of the hollow structure size which depend on the reaction conditions. The sample prepared at 200 °C for 36 h exhibited an optimal reflection loss of − 55.14 dB at 11.76 GHz with the thickness of 2.07 mm, while possessing the broadest effective bandwidth reaching 4.72 GHz (5.6–10.32 GHz) at 2.49 mm. The excellent microwave absorbing properties of such materials can be attributed to the high magnetic loss and favorable impedance matching property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Wang, J. Feng, Y. Bai, Q. Zhang, Y. Yin, Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 116(18), 10983–11060 (2016). https://doi.org/10.1021/acs.chemrev.5b00731

    Article  CAS  Google Scholar 

  2. X. Liu, J.Q. Huang, Q. Zhang, L. Mai, Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. (2017). https://doi.org/10.1002/adma.201601759

    Article  Google Scholar 

  3. L. Yu, H. Hu, H.B. Wu, X.W. Lou, Complex hollow nanostructures: synthesis and energy-related applications. Adv. Mater. (2017). https://doi.org/10.1002/adma.201604563

    Article  Google Scholar 

  4. J. Qi, X. Lai, J. Wang, H. Tang, H. Ren, Y. Yang, Q. Jin, L. Zhang, R. Yu, G. Ma, Z. Su, H. Zhao, D. Wang, Multi-shelled hollow micro-/nanostructures. Chem. Soc. Rev. 44(19), 6749–6773 (2015). https://doi.org/10.1039/c5cs00344j

    Article  CAS  Google Scholar 

  5. L. Yu, H.B. Wu, X.W. Lou, Self-templated formation of hollow structures for electrochemical energy applications. Acc. Chem. Res. 50(2), 293–301 (2017). https://doi.org/10.1021/acs.accounts.6b00480

    Article  CAS  Google Scholar 

  6. H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou, X. Li, L. Zhang, L. Cheng, Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9(7), 6332–6341 (2017). https://doi.org/10.1021/acsami.6b15826

    Article  CAS  Google Scholar 

  7. J. Yang, F. Zhang, H. Lu, X. Hong, H. Jiang, Y. Wu, Y. Li, Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem. 54(37), 10889–10893 (2015). https://doi.org/10.1002/anie.201504242

    Article  CAS  Google Scholar 

  8. H. Yu, H. Fan, B. Yadian, H. Tan, W. Liu, H.H. Hng, Y. Huang, Q. Yan, General approach for MOF-derived porous spinel AFe2O4 hollow structures and their superior lithium storage properties. ACS Appl. Mater. Interfaces 7(48), 26751–26757 (2015). https://doi.org/10.1021/acsami.5b08741

    Article  CAS  Google Scholar 

  9. Y.-H. Sun, S. Liu, F.-C. Zhou, J.-M. Nan, Electrochemical performance and structure evolution of core-shell nano-ring α-Fe2O3@Carbon anodes for lithium-ion batteries. Appl. Surf. Sci. 390, 175–184 (2016). https://doi.org/10.1016/j.apsusc.2016.08.071

    Article  CAS  Google Scholar 

  10. K.-J. Hwang, C.-H. Hwang, I.-H. Lee, T. Kim, S. Jin, J.-Y. Park, Synthesis and characterization of hollow metal oxide micro-tubes using a biomaterial template. Biomass Bioenergy 68, 62–66 (2014). https://doi.org/10.1016/j.biombioe.2014.06.004

    Article  CAS  Google Scholar 

  11. L. Duan, X. Zhang, K. Yue, Y. Wu, J. Zhuang, W. Lu, Synthesis and electrochemical property of LiMn2O4 porous hollow nanofiber as cathode for lithium-ion batteries. Nanoscale Res Lett. 12(1), 109 (2017). https://doi.org/10.1186/s11671-017-1879-1

    Article  CAS  Google Scholar 

  12. X.-Y. Yu, L. Yu, X.W.D. Lou, Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 6(3), 1501333 (2016). https://doi.org/10.1002/aenm.201501333

    Article  CAS  Google Scholar 

  13. X. Qi, W. Zheng, G. He, T. Tian, N. Du, L. Wang, NiCo2O4 hollow microspheres with tunable numbers and thickness of shell for supercapacitors. Chem. Eng. J. 309, 426–434 (2017). https://doi.org/10.1016/j.cej.2016.10.060

    Article  CAS  Google Scholar 

  14. P. Chen, B. Cui, X. Cui, W. Zhao, Y. Bu, Y. Wang, A microwave-triggered controllable drug delivery system based on hollow-mesoporous cobalt ferrite magnetic nanoparticles. J. Alloy. Compd. 699, 526–533 (2017). https://doi.org/10.1016/j.jallcom.2016.12.304

    Article  CAS  Google Scholar 

  15. Z.-C. Wu, W.-P. Li, C.-H. Luo, C.-H. Su, C.-S. Yeh, Rattle-type Fe3O4@CuS developed to conduct magnetically guided photoinduced hyperthermia at first and second NIR biological windows. Adv. Funct. Mater. 25(41), 6527–6537 (2015). https://doi.org/10.1002/adfm.201503015

    Article  CAS  Google Scholar 

  16. X. Lai, J. Li, B.A. Korgel, Z. Dong, Z. Li, F. Su, J. Du, D. Wang, General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem. 50(12), 2738–2741 (2011). https://doi.org/10.1002/anie.201004900

    Article  CAS  Google Scholar 

  17. J. Dui, G. Zhu, S. Zhou, Facile and economical synthesis of large hollow ferrites and their applications in adsorption for As(V) and Cr(VI). ACS Appl. Mater. Interfaces 5(20), 10081–10089 (2013). https://doi.org/10.1021/am402656t

    Article  CAS  Google Scholar 

  18. Y. Wang, P. Ding, C. Wang, Fabrication and lithium storage properties of MnO2 hierarchical hollow cubes. J. Alloy. Compd. 654, 273–279 (2016). https://doi.org/10.1016/j.jallcom.2015.09.079

    Article  CAS  Google Scholar 

  19. J. Nai, Y. Tian, X. Guan, L. Guo, Pearson’s principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc.. 135(43), 16082–16091 (2013). https://doi.org/10.1021/ja402751r

    Article  CAS  Google Scholar 

  20. S.I.R. Castillo, N.A. Krans, C.E. Pompe, J.H. den Otter, D.M.E. Thies-Weesie, A.P. Philipse, Synthesis method for crystalline hollow titania micron-cubes. Colloids Surf. A. 504, 228–233 (2016). https://doi.org/10.1016/j.colsurfa.2016.05.079

    Article  CAS  Google Scholar 

  21. Y. Zhang, Z. Huang, F. Tang, J. Ren, Ferrite hollow spheres with tunable magnetic properties. Thin Solid Films 515(4), 2555–2561 (2006). https://doi.org/10.1016/j.tsf.2006.04.049

    Article  CAS  Google Scholar 

  22. C.-R. Lin, I.H. Chen, C.-C. Wang, M.-L. Chen, Synthesis and characterization of magnetic hollow nanocomposite spheres. Acta Mater. 59(17), 6710–6716 (2011). https://doi.org/10.1016/j.actamat.2011.07.028

    Article  CAS  Google Scholar 

  23. L. Zhang, Y. Sun, W. Jia, S. Ma, B. Song, Y. Li, H. Jiu, J. Liu, Multiple shell hollow CoFe2O4 spheres: synthesis, formation mechanism and properties. Ceram. Int. 40(7), 8997–9002 (2014). https://doi.org/10.1016/j.ceramint.2014.01.111

    Article  CAS  Google Scholar 

  24. Z.W. Zhao, T. Wen, K. Liang, Y.F. Jiang, X. Zhou, C.C. Shen, A.W. Xu, Carbon-coated Fe3O4/VOx Hollow microboxes derived from metal-organic frameworks as a high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 9(4), 3757–3765 (2017). https://doi.org/10.1021/acsami.6b15110

    Article  CAS  Google Scholar 

  25. H. Xu, W. Wang, Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew. Chem. Int. Ed. 46, 1489–1492 (2007). https://doi.org/10.1002/anie.200603895

    Article  CAS  Google Scholar 

  26. L. Zhao, F. Tao, Z. Quan, X. Zhou, Y. Yuan, J. Hu, Bubble template synthesis of copper sulfide hollow spheres and their applications in lithium ion battery. Mater. Lett. 68, 28–31 (2012). https://doi.org/10.1016/j.matlet.2011.09.108

    Article  CAS  Google Scholar 

  27. T.H. Le, Y. Yang, L. Yu, T. Gao, Z. Huang, F. Kang, Polyimide-based porous hollow carbon nanofibers for supercapacitor electrode. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.43397

    Article  Google Scholar 

  28. H. Lou, J. Wang, Z. Zhao, X. Cai, Y. Hou, Effect of heat treatment on the structure of M-Type BaFe12O19 hollow ceramic microspheres prepared by self-reactive quenching technology and microwave absorption properties. J. Mater. Sci. Mater. Med. 48, 5664–5672 (2013). https://doi.org/10.1007/s10853-013-7362-1

    Article  CAS  Google Scholar 

  29. C. Zhai, N. Du, H. Zhang, D. Yang, Cobalt–iron cyanide hollow cubes: three-dimensional self-assembly and magnetic properties. J. Alloy. Compd. 509(33), 8382–8386 (2011). https://doi.org/10.1016/j.jallcom.2011.05.073

    Article  CAS  Google Scholar 

  30. K.Y. Niu, J. Park, H. Zheng, A.P. Alivisatos, Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect. Nano Lett. 13, 5715–5719 (2013). https://doi.org/10.1021/nl4035362

    Article  CAS  Google Scholar 

  31. B. Zhao, X. Guo, Y. Zhou, T. Su, C. Ma, R. Zhang, Constructing hierarchical hollow CuS microspheres via a galvanic replacement reaction and their use as wide-band microwave absorbers. CrystEngComm 19(16), 2178–2186 (2017). https://doi.org/10.1039/c7ce00235a

    Article  CAS  Google Scholar 

  32. L. Zhou, Z. Zhuang, H. Zhao, M. Lin, D. Zhao, L. Mai, Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Adv. Mater. (2017). https://doi.org/10.1002/adma.201602914

    Article  Google Scholar 

  33. Q. Zeng, P. Chen, Q. Yu, H.R. Chu, X.H. Xiong, D.W. Xu, Q. Wang, Self-assembly of ternary hollow microspheres with strong wideband microwave absorption and controllable microwave absorption properties. Sci. Rep. 7(1), 8388 (2017). https://doi.org/10.1038/s41598-017-08293-3

    Article  CAS  Google Scholar 

  34. L. Saini, M.K. Patra, R.K. Jani, G.K. Gupta, A. Dixit, S.R. Vadera, Tunable twin matching frequency (fm1/fm2) behavior of Ni1–xZnxFe2O4/NBR composites over 2–12.4 GHz: a strategic material system for stealth applications. Sci. Rep. 7, 44457 (2017). https://doi.org/10.1038/srep44457

    Article  CAS  Google Scholar 

  35. F. Wang, X. Wang, J. Zhu, H. Yang, X. Kong, X. Liu, Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties. Sci. Rep. 6, 37892 (2016). https://doi.org/10.1038/srep37892

    Article  CAS  Google Scholar 

  36. P. He, Z.-L. Hou, K.-L. Zhang, J. Li, K. Yin, S. Feng, S. Bi, Lightweight ferroferric oxide nanotubes with natural resonance property and design for broadband microwave absorption. J. Mater. Sci. 52(13), 8258–8267 (2017). https://doi.org/10.1007/s10853-017-1041-6

    Article  CAS  Google Scholar 

  37. I. Shanenkov, A. Sivkov, A. Ivashutenko, V. Zhuravlev, Q. Guo, L. Li, G. Li, G. Wei, W. Han, Magnetite hollow microspheres with a broad absorption bandwidth of 11.9 GHz: toward promising lightweight electromagnetic microwave absorption. Phys. Chem. Chem. Phys. 19(30), 19975–19983 (2017). https://doi.org/10.1039/c7cp03292g

    Article  CAS  Google Scholar 

  38. C. Shang, G. Ji, W. Liu, X. Zhang, H. Lv, Y. Du, One-pot in situ molten salt synthesis of octahedral Fe3O4 for efficient microwave absorption application. RSC Adv. 5(98), 80450–80456 (2015). https://doi.org/10.1039/c5ra15949k

    Article  CAS  Google Scholar 

  39. T. Zhang, G. Wen, Y.P. Wang, L. Xia, Monodispersed boron carbonitride hollow spheres with high-performance microwave absorption property. Mater. Res. Bull. 74, 177–181 (2016). https://doi.org/10.1016/j.materresbull.2015.08.023

    Article  CAS  Google Scholar 

  40. H.-L. Zhu, Z.-F. Xu, H.-Z. Cui, J. Wu, J.-F. Dang, T.-F. Wang, L.-D. Zhang, Surface modification as an effective approach to enhance the microwave absorbing properties of hollow carbon spheres. Mater. Res. Express 3(10), 105020 (2016). https://doi.org/10.1088/2053-1591/3/10/105020

    Article  CAS  Google Scholar 

  41. C. Zhou, S. Geng, X. Xu, T. Wang, L. Zhang, X. Tian, F. Yang, H. Yang, Y. Li, Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon 108, 234–241 (2016). https://doi.org/10.1016/j.carbon.2016.07.015

    Article  CAS  Google Scholar 

  42. J. Fu, W. Yang, L. Hou, Z. Chen, T. Qiu, H. Yang, Y. Li, Enhanced electromagnetic microwave absorption performance of lightweight bowl-like carbon nanoparticles. Ind. Eng. Chem. Res. 56(40), 11460–11466 (2017). https://doi.org/10.1021/acs.iecr.7b02860

    Article  CAS  Google Scholar 

  43. J. Qiu, T. Qiu, Fabrication and microwave absorption properties of magnetite nanoparticle–carbon nanotube–hollow carbon fiber composites. Carbon 81, 20–28 (2015). https://doi.org/10.1016/j.carbon.2014.09.011

    Article  CAS  Google Scholar 

  44. Y. Huang, Y. Wang, Z. Li, Z. Yang, C. Shen, C. He, Effect of pore morphology on the dielectric properties of porous carbons for microwave absorption applications. J. Phys. Chem. C 118(45), 26027–26032 (2014). https://doi.org/10.1021/jp506999k

    Article  CAS  Google Scholar 

  45. Y. Wang, B. Han, N. Chen, D. Deng, H. Guan, Y. Wang, Enhanced microwave absorption properties of MnO2 hollow microspheres consisted of MnO2 nanoribbons synthesized by a facile hydrothermal method. J. Alloys Compd. 676, 224–230 (2016). https://doi.org/10.1016/j.jallcom.2016.03.158

    Article  CAS  Google Scholar 

  46. G. Wu, Y. Cheng, Q. Xie, Z. Jia, F. Xiang, H. Wu, Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Mater. Lett. 144, 157–160 (2015). https://doi.org/10.1016/j.matlet.2015.01.024

    Article  CAS  Google Scholar 

  47. T. Huang, M. He, Y. Zhou, S. Li, B. Ding, W. Pan, S. Huang, Y. Tong, Solvothermal synthesis of flower-like CoS hollow microspheres with excellent microwave absorption properties. RSC Adv. 6(102), 100392–100400 (2016). https://doi.org/10.1039/c6ra22920d

    Article  CAS  Google Scholar 

  48. S.J. Yan, L.N. Wang, T.H. Wang, L.Q. Zhang, Y.F. Li, S.L. Dai, Synthesis and microwave absorption property of graphene oxide/carbon nanotubes modified with cauliflower-like Fe3O4 nanospheres. Appl. Phys. A Mater. (2016). https://doi.org/10.1007/s00339-016-9769-4

    Article  Google Scholar 

  49. X. Huang, J. Zhang, Z. Liu, T. Sang, B. Song, H. Zhu, C. Wong, Facile preparation and microwave absorption properties of porous hollow BaFe12O19/CoFe2O4 composite microrods. J. Alloys Compd. 648, 1072–1075 (2015). https://doi.org/10.1016/j.jallcom.2015.07.073

    Article  CAS  Google Scholar 

  50. Z.W. Li, Z.H. Yang, Microwave absorption properties and mechanism for hollow Fe3O4 nanosphere composites. J. Magn. Magn. Mater. 387, 131–138 (2015). https://doi.org/10.1016/j.jmmm.2015.03.087

    Article  CAS  Google Scholar 

  51. D. Sarkar, M. Mandal, K. Mandal, Domain controlled magnetic and electric properties of variable sized magnetite nano-hollow spheres. J. Appl. Phys. 112(6), 064318 (2012). https://doi.org/10.1063/1.4754018

    Article  CAS  Google Scholar 

  52. W. Li, X. Qiao, Q. Zheng, T. Zhang, One-step synthesis of MFe2O4 (M = Fe, Co) hollow spheres by template-free solvothermal method. J. Alloy. Compd. 509(21), 6206–6211 (2011). https://doi.org/10.1016/j.jallcom.2011.02.157

    Article  CAS  Google Scholar 

  53. S. Torkian, A. Ghasemi, R. Shoja Razavi, Cation distribution and magnetic analysis of wideband microwave absorptive CoxNi1–xFe2O4 ferrites. Ceram. Int. 43(9), 6987–6995 (2017). https://doi.org/10.1016/j.ceramint.2017.02.124

    Article  CAS  Google Scholar 

  54. F. Wang, J. Liu, J. Kong, Z. Zhang, X. Wang, M. Itoh, K. Machida, Template free synthesis and electromagnetic wave absorption properties of monodispersed hollow magnetite nano-spheres. J. Mater. Chem. 21(12), 4314 (2011). https://doi.org/10.1039/c0jm02894k

    Article  CAS  Google Scholar 

  55. H. Lv, G. Ji, W. Liu, H. Zhang, Y. Du, Achieving hierarchical hollow carbon@Fe@Fe3O4nanospheres with superior microwave absorption properties and lightweight features. J Mater Chem C 3(39), 10232–10241 (2015). https://doi.org/10.1039/c5tc02512e

    Article  CAS  Google Scholar 

  56. S. He, G.-S. Wang, C. Lu, J. Liu, B. Wen, H. Liu, L. Guo, M.-S. Cao, Enhanced wave absorption of nanocomposites based on the synthesized complex symmetrical CuS nanostructure and poly(vinylidene fluoride). J. Mater. Chem. A 1(15), 4685 (2013). https://doi.org/10.1039/c3ta00072a

    Article  CAS  Google Scholar 

  57. N. Li, G.W. Huang, Y.Q. Li, H.M. Xiao, Q.P. Feng, N. Hu, S.Y. Fu, Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces 9(3), 2973–2983 (2017). https://doi.org/10.1021/acsami.6b13142

    Article  CAS  Google Scholar 

  58. N.F. Colaneri, L.W. Shacklette, EMI shielding measurements of conductive polymer blends. IEEE Trans. Instrum. Meas. 41, 291 (1992)

    Article  Google Scholar 

  59. Y. Naito, K.Suetake, Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans. Microw. Theory 19, 65 (1971)

    Article  Google Scholar 

  60. F. Qin, C. Brosseau, A review and nanlysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys. 111, 061301 (2012). doi.https://doi.org/10.1063/1.3688435

    Article  CAS  Google Scholar 

  61. L. Zhang, X. Yu, H. Hu, Y. Li, M. Wu, Z. Wang, G. Li, Z. Sun, C. Chen, Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature. Sci. Rep. 5, 9298 (2015). https://doi.org/10.1038/srep09298

    Article  CAS  Google Scholar 

  62. H. Lv, H. Zhang, J. Zhao, G. Ji, Y. Du, Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res. 9(6), 1813–1822 (2016). https://doi.org/10.1007/s12274-016-1074-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the National Key Research and Development Program (2016YFA0202900) and Graduate Education Funds of The Army Engineering University of PLA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Li or Guangxin Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, M., Sun, X., Lou, H. et al. Synthesis of hollow Fe3O4 particles via one-step solvothermal approach for microwave absorption materials: effect of reactant concentration, reaction temperature and reaction time. J Mater Sci: Mater Electron 29, 7539–7550 (2018). https://doi.org/10.1007/s10854-018-8746-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8746-4

Navigation