Skip to main content
Log in

Eutectogel-based self-powered wearable sensor for health monitoring in harsh environments

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Triboelectric nanogenerators (TENG) have emerged as a highly promising energy harvesting technology, attracting significant attention in recent years for their broad applications. Gel-based TENGs, with superior stretchability and sensitivity, have been widely reported as wearable sensors. However, the traditional hydrogel-based TENGs suffer from freezing at low temperatures and drying at high temperatures, resulting in malfunctions. In this study, we introduce an anti-freezing eutectogel, which uses a deep eutectic solvent (DES), to improve the stability and electrical conductivity of TENGs in harsh environmental conditions. The eutectogel-based TENG (E-TENG) produces an open-circuit voltage of 776 V, a short-circuit current of 1.54 µA, and a maximum peak power of 1.1 mW. Moreover, the E-TENG exhibits exceptional mechanical properties with an elongation at a break of 476% under tension. Importantly, it maintains impressive performances across a wide temperature range from −18 to 60 °C, with conductivities of 2.15 S/m at −10 °C and 1.75 S/m at −18 °C. Based on the excellent weight stability of the E-TENG sensor, motion sensing can be achieved in the air, and even underwater. Finally, the versatility of the E-TENG can serve as a wearable sensor, by integrating it with Bluetooth technology. The self-powered E-TENG can monitor various human motion signals in realtime and send the health signals directly to mobile phones. This research paves a new road for the applications of TENGs in harsh environments, offering wireless flexible sensors with real-time health signal monitoring capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan, F. R.; Tian, Z. Q.; Lin Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  2. Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

    Article  CAS  PubMed  Google Scholar 

  3. Yang, P. Y.; Zhou, L. L.; Gao, Y. K.; Xiao, J. F.; Liu, D.; Zhao, Z. H.; Qiao, W. Y.; Liu, J. Q.; Wang, Z. L.; Wang, J. Achieving high-performance triboelectric nanogenerator by DC pump strategy. Adv. Mater. Technol. 2023, 8, 2201957.

    Article  CAS  Google Scholar 

  4. Guo, X. H.; He, J. W.; Zheng, Y.; Wu, J. P.; Pan, C. F.; Zi, Y. L.; Cui, H. Z.; Li, X. Y. High-performance triboelectric nanogenerator based on theoretical analysis and ferroelectric nanocomposites and its high-voltage applications. Nano Res. Energy 2023, 2, e9120074.

    Article  Google Scholar 

  5. Li, X. Y.; Lau, T. H.; Guan, D.; Zi, Y. L. A universal method for quantitative analysis of triboelectric nanogenerators. J. Mater. Chem. A 2019, 7, 19485–19494.

    Article  CAS  Google Scholar 

  6. Li, G.; Liu, G. L.; He, W. C.; Long, L.; Li, B. X.; Wang, Z.; Tang, Q.; Liu, W. L.; Hu, C. G. Miura folding based charge-excitation triboelectric nanogenerator for portable power supply. Nano Res. 2021, 14, 4204–4210.

    Article  CAS  Google Scholar 

  7. Zheng, N.; Xue, J. H.; Jie, Y.; Cao, X.; Wang, Z. L. Wearable and humidity-resistant biomaterials-based triboelectric nanogenerator for high entropy energy harvesting and self-powered sensing. Nano Res. 2022, 15, 6213–6219.

    Article  CAS  Google Scholar 

  8. Qi, C. X.; Yang, Z. Y.; Zhi, J. Y.; Zhang, R. C.; Wen, J.; Qin, Y. Enhancing the powering ability of triboelectric nanogenerator through output signal’s management strategies. Nano Res. 2023, 16, 11783–11800.

    Article  Google Scholar 

  9. Gan, L. Y.; Xia, F.; Zhang, P. P.; Jiang, X. J.; Liu, Y. X.; Niu, S. M.; Hu, Y. F. Triboelectric nanogenerators with a constant inherent capacitance design. Nano Res. 2023, 16, 4077–4084.

    Article  CAS  Google Scholar 

  10. Wang, Y. Q.; Huang, T.; Gao, Q.; Li, J. P.; Wen, J. M.; Wang, Z. L.; Cheng, T. H. High-voltage output triboelectric nanogenerator with DC/AC optimal combination method. Nano Res. 2022, 15, 3239–3245.

    Article  CAS  Google Scholar 

  11. Wang, W. J.; Sun, W. T.; Du, Y. F.; Zhao, W. B.; Liu, L. J.; Sun, Y.; Kong, D. J.; Xiang, H. F.; Wang, X. X.; Li, Z. et al. Triboelectric nanogenerators-based therapeutic electrical stimulation on skin: From fundamentals to advanced applications. ACS Nano 2023, 17, 9793–9825.

    Article  CAS  PubMed  Google Scholar 

  12. Pang, Y. K.; Fang, Y. H.; Su, J. J.; Wang, H. G.; Tan, Y. Q.; Cao, C. Y. Soft ball-based triboelectric-electromagnetic hybrid nanogenerators for wave energy harvesting. Adv. Mater. Technol. 2023, 8, 2201246.

    Article  CAS  Google Scholar 

  13. Yu, Y.; Wang, X. X.; Xie, G. X.; Ma, J. Q.; Lv, T. Y.; Du, K. F.; Hu, H.; Zhang, J.; Li, Y. Q.; Long, Y. Z. et al. Preparation and piezoelectric catalytic performance of flexible inorganic Ba1−xCaxTiO3 via electrospinning. J. Mater. Chem. A 2021, 9, 24695–24703.

    Article  CAS  Google Scholar 

  14. Li, Y. M.; Chen, S. E.; Yan, H.; Jiang, H. W.; Luo, J. J.; Zhang, C.; Pang, Y. K.; Tan, Y. Q. Biodegradable, transparent, and antibacterial alginate-based triboelectric nanogenerator for energy harvesting and tactile sensing. Chem. Eng. J. 2023, 468, 143572.

    Article  CAS  Google Scholar 

  15. Pang, Y. K.; Huang, Z. D.; Fang, Y. H.; Xu, X. C.; Cao, C. Y. Toward self-powered integrated smart packaging system-Desiccant-based triboelectric nanogenerators. Nano Energy 2023, 114, 108659.

    Article  CAS  Google Scholar 

  16. Zhu, Z. Y.; Li, B.; Zhao, E.; Yu, M. Self-powered silicon PIN neutron detector based on triboelectric nanogenerator. Nano Energy 2022, 102, 107668.

    Article  CAS  Google Scholar 

  17. Jiang, M.; Li, B.; Jia, W. Z.; Zhu, Z. Y. Predicting output performance of triboelectric nanogenerators using deep learning model. Nano Energy 2022, 93, 106830.

    Article  CAS  Google Scholar 

  18. Dong, K.; Peng, X.; An, J.; Wang, A. C.; Luo, J. J.; Sun, B. Z.; Wang, J.; Wang, Z. L. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat. Commun. 2020, 11, 2868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dong, K.; Peng, X.; Cheng, R. W.; Ning, C.; Jiang, Y.; Zhang, Y. H.; Wang, Z. L. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Adv. Mater. 2022, 34, 2109355.

    Article  CAS  Google Scholar 

  20. Dong, K.; Wang, Z. L. Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors. J. Semicond. 2021, 42, 101601.

    Article  CAS  Google Scholar 

  21. Wu, J. P.; Liang, W.; Song, W. Z.; Zhou, L. N.; Wang, X. X.; Ramakrishna, S.; Long, Y. Z. An acid and alkali-resistant triboelectric nanogenerator. Nanoscale 2020, 12, 23225–23233.

    Article  CAS  PubMed  Google Scholar 

  22. Li, X. Y.; Zhang, C. G.; Gao, Y. K.; Zhao, Z. H.; Hu, Y. X.; Yang, O.; Liu, L.; Zhou, L. L.; Wang, J.; Wang, Z. L. A highly efficient constant-voltage triboelectric nanogenerator. Energy Environ. Sci. 2022, 11, 1334–1345.

    Article  Google Scholar 

  23. Wang, Z.; Tang, Q.; Shan, C. C.; Du, Y.; He, W. C.; Fu, S. K.; Li, G.; Liu, A. P.; Liu, W. L.; Hu, C. G. Giant performance improvement of triboelectric nanogenerator systems achieved by matched inductor design. Energy Environ. Sci. 2021, 14, 6627–6637.

    Article  Google Scholar 

  24. Zeng, Q. X.; Chen, A.; Zhang, X. F.; Luo, Y. L.; Tan, L. M.; Wang, X. A dual-functional triboelectric nanogenerator based on the comprehensive integration and synergetic utilization of triboelectrification, electrostatic induction, and electrostatic discharge to achieve alternating current/direct current convertible outputs. Adv. Mater. 2023, 31, 2208139.

    Article  Google Scholar 

  25. Zhang, Y.; Zeng, Q. X.; Wu, Y.; Wu, J.; Yuan, S. L.; Tan, D. J.; Hu, C. G.; Wang, X. An ultra-durable windmill-like hybrid nanogenerator for steady and efficient harvesting of low-speed wind energy. Nano-Micro Lett. 2020, 12, 175.

    Article  CAS  Google Scholar 

  26. Patnam, H.; Graham, S. A.; Manchi, P.; Paranjape, M. V.; Yu, J. S. Single-electrode triboelectric nanogenerators based on ionic conductive hydrogel for mechanical energy harvester and smart touch sensor applications. ACS Appl. Mater. Interfaces 2023, 15, 16768–16777.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Z.; Liu, Z. R.; Zhao, G. R.; Zhang, Z. C.; Zhao, X. Y.; Wan, X. Y.; Zhang, Y. L.; Wang, Z. L.; Li, L. L. Stretchable unsymmetrical piezoelectric BaTiO3 composite hydrogel for triboelectric nanogenerators and multimodal sensors. ACS Nano 2022, 16, 1661–1670.

    Article  CAS  PubMed  Google Scholar 

  28. Lu, Y.; Jiang, L. L.; Yu, Y.; Wang, D. H.; Sun, W. T.; Liu, Y.; Yu, J.; Zhang, J.; Wang, K.; Hu, H. et al. Liquid-liquid triboelectric nanogenerator based on the immiscible interface of an aqueous two-phase system. Nat. Commun. 2022, 13, 5316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, G. X.; Li, L. W.; Zhang, P. P.; Chang, C. Y.; Xu, F.; Pu, X. Ultra-stretchable and healable hydrogel-based triboelectric nanogenerators for energy harvesting and self-powered sensing. RSC Adv. 2021, 11, 17437–17444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xue, K.; Shao, C. Y.; Yu, J.; Zhang, H. M.; Wang, B.; Ren, W. F.; Cheng, Y. B.; Jin, Z. X.; Zhang, F.; Wang, Z. K. et al. Initiatorless solar photopolymerization of versatile and sustainable eutectogels as multi-response and self-powered sensors for human-computer interface. Adv. Funct. Mater. 2023, 33, 2305879.

    Article  CAS  Google Scholar 

  31. Zhang, H. M.; Xue, K.; Xu, X. H.; Wang, X. H.; Wang, B.; Shao, C. Y.; Sun, R. C. Green and low-cost alkali-polyphenol synergetic self-catalysis system access to fast gelation of self-healable and self-adhesive conductive hydrogels for self-powered triboelectric nanogenerators. Small, in press, https://doi.org/10.1002/smll.202305502.

  32. Feng, Y. F.; Yu, J.; Sun, D.; Ren, W. F.; Shao, C. Y.; Sun, R. C. Solvent-induced in-situ self-assembly lignin nanoparticles to reinforce conductive nanocomposite organogels as anti-freezing and anti-dehydration flexible strain sensors. Chem. Eng. J. 2022, 433, g33202.

    Article  Google Scholar 

  33. Wang, X. X.; Yu, G. F.; Zhang, J.; Yu, M.; Ramakrishna, S.; Long, Y. Z. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Prog. Mater. Sci. 2021, 115, 100704.

    Article  CAS  Google Scholar 

  34. Du, Y. Z.; Wang, X. D.; Dai, X. Y.; Lu, W. X.; Tang, Y. S.; Kong, J. Ultraflexible, highly efficient electromagnetic interference shielding, and self-healable triboelectric nanogenerator based on Ti3C2Tx MXene for self-powered wearable electronics. J. Mater. Sci. Technol. 2022, 100, 1–11.

    Article  Google Scholar 

  35. Wu, M.; Wang, X.; Xia, Y. F.; Zhu, Y.; Zhu, S. L.; Jia, C. Y.; Guo, W. Y.; Li, Q. Q.; Yan, Z. G. Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 2022, 95, 106967.

    Article  CAS  Google Scholar 

  36. Zheng, Y.; Liu, T.; Wu, J. P.; Xu, T. T.; Wang, X. D.; Han, X.; Cui, H. Z.; Xu, X. F.; Pan, C. F.; Li, X. Y. Energy conversion analysis of multilayered triboelectric nanogenerators for synergistic rain and solar energy harvesting. Adv. Mater. 2022, 34, 2202238.

    Article  CAS  Google Scholar 

  37. Liu, J. J.; Qu, S. X.; Suo, Z. G.; Yang, W. Functional hydrogel coatings. Natl. Sci. Rev. 2021, 8, nwaa254.

    Article  CAS  PubMed  Google Scholar 

  38. Luo, X. X.; Zhu, L. P.; Wang, Y. C.; Li, J. Y.; Nie, J. J.; Wang, Z. L. A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv. Funct. Mater. 2021, 31, 2104928.

    Article  CAS  Google Scholar 

  39. Shuai, L. Y. Z.; Guo, Z. H.; Zhang, P. P.; Wan, J. M.; Pu, X.; Wang, Z. L. Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy 2020, 78, 105389.

    Article  CAS  Google Scholar 

  40. Du, S.; Suo, H. N.; Xie, G.; Lyu, Q.; Mo, M.; Xie, Z. J.; Zhou, N. Y.; Zhang, L. B.; Tao, J.; Zhu, J. T. Self-powered and photothermal electronic skin patches for accelerating wound healing. Nano Energy 2022, 93, 106906.

    Article  CAS  Google Scholar 

  41. Huang, Y.; Liu, J.; Wang, J. Q.; Hu, M. M.; Mo, F. N.; Liang, G. J.; Zhi, C. Y. An intrinsically self-healing NiCo|Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew. Chem., Int. Ed. 2018, 57, 9810–9813.

    Article  CAS  Google Scholar 

  42. Wang, Q. H.; Pan, X. F.; Lin, C. M.; Lin, D. Z.; Ni, Y. H.; Chen, L. H.; Huang, L. L.; Cao, S. L.; Ma, X. J. Biocompatible, self-wrinkled, antifreezing and stretchable hydrogel-based wearable sensor with PEDOT: Sulfonated lignin as conductive materials. Chem. Eng. J. 2019, 370, 1039–1047.

    Article  CAS  Google Scholar 

  43. Ge, W. J.; Cao, S.; Yang, Y.; Rojas, O. J.; Wang, X. H. Nanocelluloser/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions. Chem. Eng. J. 2021, 408, 127306.

    Article  CAS  Google Scholar 

  44. Kim, Y.; Lee, D.; Seong, J.; Bak, B.; Choi, U. H.; Kim, J. Ionic liquid-based molecular design for transparent, flexible, and fire-retardant triboelectric nanogenerator (TENG) for wearable energy solutions. Nano Energy 2021, 84, 105925.

    Article  CAS  Google Scholar 

  45. Darabi, M. A.; Khosrozadeh, A.; Mbeleck, R.; Liu, Y. Q.; Chang, Q.; Jiang, J. Z.; Cai, J.; Wang, Q.; Luo, G. X.; Xing, M. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv. Mater. 2017, 29, 1700533.

    Article  Google Scholar 

  46. Yuk, H.; Wu, J. J.; Zhao, X. H. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 2022, 7, 935–952.

    Article  CAS  Google Scholar 

  47. Bhatia, D.; Jo, S. H.; Ryu, Y.; Kim, Y.; Kim, D. H.; Park, H. S. Wearable triboelectric nanogenerator based exercise system for upper limb rehabilitation post neurological injuries. Nano Energy 2021, 80, 105508.

    Article  CAS  Google Scholar 

  48. Liu, W. L.; Wang, Z.; Wang, G.; Zeng, Q. X.; He, W. C.; Liu, L. Y.; Wang, X.; Xi, Y.; Guo, H. Y.; Hu, C. G. et al. Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nat. Commun. 2020, 11, 1883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feng, Y. F.; Yu, J.; Sun, D.; Dang, C.; Ren, W. F.; Shao, C. Y.; Sun, R. C. Extreme environment-adaptable and fast self-healable eutectogel triboelectric nanogenerator for energy harvesting and self-powered sensing. Nano Energy 2022, 98, 107284.

    Article  CAS  Google Scholar 

  50. Lin, S. Q.; Xu, L.; Xu, C.; Chen, X. Y.; Wang, A. C.; Zhang, B. B.; Lin, P.; Yang, Y.; Zhao, H. B.; Wang, Z. L. Electron transfer in nanoscale contact electrification: Effect of temperature in the metal-dielectric case. Adv. Mater. 2019, 31, 1808197.

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the Natural Science Foundation of Shandong Province, China (No. ZR2021QE043), the National Natural Science Foundation of China (Nos. 52101390 and 52331004), and the Open Project of Key Lab of Special Functional Materials of Ministry of Education, Henan University (No. KFKT-2022-11).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongzhi Cui or Xiaoyi Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Teng, X., Liu, L. et al. Eutectogel-based self-powered wearable sensor for health monitoring in harsh environments. Nano Res. 17, 5559–5568 (2024). https://doi.org/10.1007/s12274-024-6425-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6425-8

Keywords

Navigation