Skip to main content
Log in

Miura folding based charge-excitation triboelectric nanogenerator for portable power supply

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Miniaturized mobile electronic devices have aroused great attention due to their convenience to daily life. However, they still face a problem that power supply from the conventional cell needs to be regularly charged or replaced. Portable electricity supply collecting energy from environment is highly desired. Herein, a highly flexible and stretchable Miura folding based triboelectric nanogenerator (MF-TENG) is prepared by using flexible polyethylene terephthalate (PET) as a folding substrate with a double working side design, specifically one side as the main TENG (M-TENG) and other side as the excitation TENG (E-TENG). The E-TENG supplements charge to M-TENG by a half-wave rectifier circuit. This design increases the TENG working area and reduces its volume. The output performance of the TENG based on Miura folding with charge excitation called MF-CE-TENG is greatly boosted. The optimal output charge and maximum peak power of MF-CE-TENG achieves 1.54 µC and 5.17 mW at 1 Hz, respectively, which is 4.61 and 10.55 times as much as that of MF-TENG without charge excitation. To demonstrate its applications, the MF-CE-TENG is used to light up 456 LEDs brightly and charge a 100 µF capacitor to 6.07 V in 5 min. A calculator and a temperature-humidity sensor work normally powered by MF-CE-TENG with an energy management module. This work provides a new strategy to enhance the output energy of Miura folding TENG by applying a charge excitation mode for the first time, which might be an effective approach to be used in other TENGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Patel, M.; Wang, J. F. Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wirel. Commun.2010, 17, 80–88.

    Article  Google Scholar 

  2. Mojarradi, M.; Binkley, D.; Blalock, B.; Andersen, R.; Ulshoefer, N.; Johnson, T.; Del Castillo, L. A miniaturized neuroprosthesis suitable for implantation into the brain. IEEE Trans. Neural Syst. Rehabil. Eng.2003, 11, 38–42.

    Article  Google Scholar 

  3. Chen, G. R.; Li, Y. Z.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev.2020, 120, 3668–3720.

    Article  CAS  Google Scholar 

  4. Chen, J.; Huang, Y.; Zhang, N. N.; Zou, H. Y.; Liu, R. Y.; Tao, C. Y.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy2016, 1, 16138.

    Article  CAS  Google Scholar 

  5. Zhang, N. N.; Huang, F.; Zhao, S. L.; Lv, X. H.; Zhou, Y. H.; Xiang, S. W.; Xu, S. M.; Li, Y. Z.; Chen, G. R.; Tao, C. Y. et al. Photo-rechargeable fabrics as sustainable and robust power sources for wearable bioelectronics. Matter2020, 2, 1260–1269.

    Article  Google Scholar 

  6. Zou, Y. J.; Raveendran, V.; Chen, J. Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy2020, 77, 105303.

    Article  CAS  Google Scholar 

  7. Wang, P. H.; Pan, L.; Wang, J. Y.; Xu, M. Y.; Dai, G. Z.; Zou, H. Y.; Dong, K.; Wang, Z. L. An ultra-low-friction triboelectric-electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor. ACS Nano2018, 12, 9433–9440.

    Article  CAS  Google Scholar 

  8. Li, Y. J.; Cao, Q.; Zhang, W.; Zhang, Y.; Cao, J. N. A miniaturized electromagnetic energy harvester with volt-level output based on stacked flexible coils. Smart. Mater. Struct.2018, 27, 115040.

    Article  Google Scholar 

  9. Tan, Y. S.; Dong, Y.; Wang, X. H. Review of MEMS electromagnetic vibration energy harvester. J. Microelectromech. Syst.2017, 26, 1–16.

    Article  Google Scholar 

  10. Wang, S. W.; Bi, M. Z.; Cao, Z. Y.; Ye, X. Y. Linear freestanding electret generator for harvesting swinging motion energy: Optimization and experiment. Nano Energy2019, 65, 104013.

    Article  CAS  Google Scholar 

  11. Zhang, Y. L.; Wang, T. Y.; Luo, A. X.; Hu, Y. S.; Li, X. X.; Wang, F. Micro electrostatic energy harvester with both broad bandwidth and high normalized power density. Appl. Energ.2018, 212, 362–371.

    Article  Google Scholar 

  12. Zhou, T.; Zhang, L. M.; Xue, F.; Tang, W.; Zhang, C.; Wang, Z. L. Multilayered electret films based triboelectric nanogenerator. Nano Res. 2016, 9, 1442–1451.

    Article  CAS  Google Scholar 

  13. Fan, K. Q.; Tan, Q. X.; Zhang, Y. W.; Liu, S. H.; Cai, M. L.; Zhu, Y. M. A monostable piezoelectric energy harvester for broadband low-level excitations. Appl. Phys. Lett.2018, 112, 123901.

    Article  CAS  Google Scholar 

  14. Shan, X. B.; Li, H. L.; Yang, Y. C.; Feng, J.; Wang, Y. C.; Xie, T. Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration. Energy2019, 172, 134–140.

    Article  Google Scholar 

  15. Wang, J. L.; Zhou, S. X.; Zhang, Z. E.; Yurchenko, D. Highperformance piezoelectric wind energy harvester with Y-shaped attachments. Energy Convers. Manage.2019, 181, 645–652.

    Article  Google Scholar 

  16. Zhang, X. Q.; Pondrom, P.; Sessler, G. M.; Ma, X. C. Ferroelectret nanogenerator with large transverse piezoelectric activity. Nano Energy2018, 50, 52–61.

    Article  CAS  Google Scholar 

  17. Ueno, T. Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications. J. Appl. Phys.2015, 117, 17A740.

    Article  CAS  Google Scholar 

  18. Yang, Z. S.; Tang, L. H.; Tao, K.; Aw, K. A broadband electret-based vibrational energy harvester using soft magneto-sensitive elastomer with asymmetrical frequency response profile. Smart Mater. Struct.2019, 28, 10LT02.

    Article  CAS  Google Scholar 

  19. Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun.2019, 10, 1427.

    Article  CAS  Google Scholar 

  20. Lin, Z. M.; Zhang, B. B.; Guo, H. Y.; Wu, Z. Y.; Zou, H. Y.; Yang, J.; Wang, Z. L. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy2019, 64, 103908

    Article  CAS  Google Scholar 

  21. Wang, Z. L.; Wang, A. C. On the origin of contact-electrification. Mater. Today2019, 30, 34–51.

    Article  CAS  Google Scholar 

  22. Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci.2013, 6, 3576–3583.

    Article  Google Scholar 

  23. Qin, K.; Chen, C.; Pu, X. J.; Tang, Q.; He, W. C.; Liu, Y. K.; Zeng, Q. X.; Liu, G. L.; Guo, H. Y.; Hu, C. G. Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett.2021, 13, 51.

    Article  CAS  Google Scholar 

  24. Liu, G. L.; Xiao, L. F.; Chen, C. Y.; Liu, W. L.; Pu, X. J.; Wu, Z. Y.; Hu, C. G.; Wang, Z. L. Power cables for triboelectric nanogenerator networks for large-scale blue energy harvesting. Nano Energy2020, 75, 104975.

    Article  CAS  Google Scholar 

  25. Tang, Q.; Guo, H. Y.; Yan, P.; Hu, C. G. Recent progresses on paper-based triboelectric nanogenerator for portable self-powered sensing systems. EcoMat2020, 2, e12060.

    Article  Google Scholar 

  26. Xia, K. Q.; Zhang, H. Z.; Zhu, Z. Y.; Xu, Z. W. Folding triboelectric nanogenerator on paper based on conductive ink and teflon tape. Sensor. Actuat. A-Phys.2018, 272, 28–32.

    Article  CAS  Google Scholar 

  27. An, J.; Wang, Z. M.; Jiang, T.; Liang, X.; Wang, Z. L. Whirling-folded triboelectric nanogenerator with high average power for water wave energy harvesting. Adv. Funct. Mater.2019, 29, 1904867.

    Article  CAS  Google Scholar 

  28. Tao, K.; Yi, H. P.; Yang, Y.; Chang, H. L.; Wu, J.; Tang, L. H.; Yang, Z. S.; Wang, N.; Hu, L. X.; Fu, Y. Q. et al. Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy2020, 67, 104197.

    Article  CAS  Google Scholar 

  29. Yang, H. M.; Deng, M. M.; Tang, Q.; He, W. C.; Hu, C. G.; Xi, Y.; Liu, R. C.; Wang, Z. L. A nonencapsulative pendulum-like paper-based hybrid nanogenerator for energy harvesting. Adv. Energy Mater.2019, 9, 1901149.

    Article  CAS  Google Scholar 

  30. Li, S. L. Double-folding paper-based generator for mechanical energy harvesting. Front. Optoelectron.2017, 10, 38–43.

    Article  Google Scholar 

  31. Chen, C.; Howard, D.; Zhang, S. L.; Do, Y.; Sun, S.; Cheng, T.; Wang, Z. L.; Abowd, G. D.; Oh, H. SPIN (Self-powered paper interfaces): Bridging triboelectric nanogenerator with folding paper creases. In Proceedings of the 14th International Conference on Tangible, Embedded, and Embodied Interaction, Sydney, NSW, Australia, 2020, pp 431–442.

  32. Zhou, C. J.; Yang, Y. Q.; Sun, N.; Wen, Z.; Cheng, P.; Xie, X. K.; Shao, H. Y.; Shen, Q. Q.; Chen, X. P.; Liu, Y. N. et al. Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Res.2018, 11, 4313–4322.

    Article  CAS  Google Scholar 

  33. Niu, S. M.; Zhou, Y. S.; Wang, S. H.; Liu, Y.; Lin, L.; Bando, Y.; Wang, Z. L. Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system. Nano Energy2014, 8, 150–156.

    Article  CAS  Google Scholar 

  34. Niu, S. M.; Liu, Y.; Zhou, Y. S.; Wang, S. H.; Lin, L.; Wang, Z. L. Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage. IEEE Trans. Electron Dev.2015, 62, 641–647.

    Article  Google Scholar 

  35. Schenk, M.; Guest, S. D. Geometry of miura-folded metamaterials. Proc. Natl. Acad. Sci. USA2013, 110, 3276–3281.

    Article  CAS  Google Scholar 

  36. Silverberg, J. L.; Evans, A. A.; McLeod, L.; Hayward, R. C.; Hull, T.; Santangelo, C. D.; Cohen, I. Using origami design principles to fold reprogrammable mechanical metamaterials. Science2014, 345, 647–650.

    Article  CAS  Google Scholar 

  37. Song, Z. M.; Ma, T.; Tang, R.; Cheng, Q.; Wang, X.; Krishnaraju, D.; Panat, R.; Chan, C. K.; Yu, H. Y.; Jiang, H. P. Origami lithium-ion batteries. Nat. Commun.2014, 5, 3140.

    Article  CAS  Google Scholar 

  38. Yasuda, H.; Yang, J. Reentrant origami-based metamaterials with negative poisson’s ratio and bistability. Phys. Rev. Lett.2015, 114, 185502.

    Article  CAS  Google Scholar 

  39. Tao, K.; Yi, H. P.; Yang, Y.; Tang, L. H.; Yang, Z. S.; Wu, J.; Chang, H. L.; Yuan, W. Z. Miura-origami-inspired electret/triboelectric power generator for wearable energy harvesting with water-proof capability. Microsyst. Nanoeng.2020, 6, 56.

    Article  CAS  Google Scholar 

  40. Liu, W. L.; Wang, Z.; Wang, G.; Liu, G. L.; Chen, J.; Pu, X. J.; Xi, Y.; Wang, X.; Guo, H. Y.; Hu, C. G. et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun.2019, 10, 1426.

    Article  CAS  Google Scholar 

  41. He, W. C.; Liu, W. L.; Chen, J.; Wang, Z.; Liu, Y. K.; Pu, X. J.; Yang, H. M.; Tang, Q.; Yang, H. K.; Guo, H. Y. et al. Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun.2020, 11, 4277.

    Article  CAS  Google Scholar 

  42. Wang, Z.; Liu, W. L.; Hu, J. L.; He, W. C.; Yang, H. K.; Ling, C.; Xi, Y.; Wang, X.; Liu, A. P.; Hu, C. G. Two voltages in contact-separation triboelectric nanogenerator: From asymmetry to symmetry for maximum output. Nano Energy2020, 69, 104452.

    Article  CAS  Google Scholar 

  43. Liu, Y. K.; Liu, W. L.; Wang, Z.; He, W. C.; Tang, Q.; Xi, Y.; Wang, X.; Guo, H. Y.; Hu, C. G. Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nat. Commun.2020, 11, 1599.

    Article  CAS  Google Scholar 

  44. Wang, Z.; Liu, W. L.; He, W. C.; Guo, H. Y.; Long, L.; Xi, Y.; Wang, X.; Liu, A. P.; Hu, C. G. Ultrahigh electricity generation from low-frequency mechanical energy by efficient energy management. Joule2021, 5, 441–455.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52073037), the Fundamental Research Funds for the Central Universities (No. 2019CDXZWL001) and Chongqing graduate tutor team construction project (No. ydstd1832).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenlin Liu or Chenguo Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Liu, G., He, W. et al. Miura folding based charge-excitation triboelectric nanogenerator for portable power supply. Nano Res. 14, 4204–4210 (2021). https://doi.org/10.1007/s12274-021-3401-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3401-4

Keywords

Navigation