Skip to main content
Log in

Asymmetrically coordinated main group atomic In-S1N3 interface sites for promoting electrochemical CO2 reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Designing catalysts with highly active, selectivity, and stability for electrocatalytic CO2 to formate is currently a severe challenge. Herein, we developed an electronic structure engineering on carbon nano frameworks embedded with nitrogen and sulfur asymmetrically dual-coordinated indium active sites toward the efficient electrocatalytic CO2 reduction reaction. As expected, atomically dispersed In-based catalysts with In-S1N3 atomic interface with asymmetrically coordinated exhibited high efficiency for CO2 reduction reaction (CO2RR) to formate. It achieved a maximum Faradaic efficiency (FE) of 94.3% towards formate generation at −0.8 V vs. reversible hydrogen electrode (RHE), outperforming that of catalysts with In-S2N2 and In-N4 atomic interface. And at a potential of −1.10 V vs. RHE, In-S1N3 achieves an impressive Faradaic efficiency of 93.7% in flow cell. The catalytic performance of In-S1N3 sites was confirmed to be enhanced through in-situ X-ray absorption near-edge structure (XANES) measurements under electrochemical conditions. Our discovery provides the guidance for performance regulation of main group metal catalysts toward CO2RR at atomic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao, D. F.; Arán-Ais, R. M.; Jeon, H. S.; Cuenya, B. R. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210.

    Article  CAS  Google Scholar 

  2. Sun, Z. Y.; Hu, Y. N.; Zhou, D. N.; Sun, M. R.; Wang, S.; Chen, W. X. Factors influencing the performance of copper-bearing catalysts in the CO2 reduction system. ACS Energy Lett. 2021, 6, 3992–4022.

    Article  CAS  Google Scholar 

  3. Xie, Y.; Ou, P. F.; Wang, X.; Xu, Z. Y.; Li, Y. C.; Wang, Z. Y.; Huang, J. E.; Wicks, J.; McCallum, C.; Wang, N. et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 2022, 5, 564–570.

    Article  CAS  Google Scholar 

  4. Yang, X. F.; Wang, Q. R.; Chen, F. R.; Zang, H.; Liu, C. J.; Yu, N.; Geng, B. Y. In-situ electrochemical restructuring of Cu2BiSx solid solution into Bi/CuxSy heterointerfaces enabling stabilization intermediates for high-performance CO2 electroreduction to formate. Nano Res. 2023, 16, 7974–7981

    Article  CAS  Google Scholar 

  5. Zhao, Z. B.; Zhang, J. G.; Lei, M.; Lum, Y. Reviewing the impact of halides on electrochemical CO2 reduction. Nano Res. Energy. 2023, 2, e9120044.

    Article  Google Scholar 

  6. Yang, X.; Li, Q. X.; Chi, S. Y.; Li, H. F.; Huang, Y. B.; Cao, R. Hydrophobic perfluoroalkane modified metal-organic frameworks for the enhanced electrocatalytic reduction of CO2. SmartMat 2022, 3, 163–172.

    Article  CAS  Google Scholar 

  7. Yang, P. P.; Gao, M. R. Enrichment of reactants and intermediates for electrocatalytic CO2 reduction. Chem. Soc. Rev. 2023, 52, 4343–4380.

    Article  CAS  PubMed  Google Scholar 

  8. Duanmu, J. W.; Gao, M. R. Advances in bio-inspired electrocatalysts for clean energy future. Nano Res., in press, https://doi.org/10.1007/s12274-023-5977-3.

  9. Deng, W. Y.; Zhang, P.; Seger, B.; Gong, J. L. Unraveling the rate-limiting step of two-electron transfer electrochemical reduction of carbon dioxide. Nat. Commun. 2022, 13, 803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gu, Z. X.; Shen, H.; Chen, Z.; Yang, Y. Y.; Yang, C.; Ji, Y. L.; Wang, Y. H.; Zhu, C.; Liu, J. L.; Li, J. et al. Efficient electrocatalytic CO2 reduction to C2+ alcohols at defect-site-rich Cu surface. Joule 2021, 5, 429–440.

    Article  CAS  Google Scholar 

  11. Wang, M. L.; Yao, Y.; Tian, Y. H.; Yuan, Y. F.; Wang, L. G.; Yang, F. Y.; Ren, J. J.; Hu, X. R.; Wu, F.; Zhang, S. Q. et al. Atomically dispersed manganese on carbon substrate for aqueous and aprotic CO2 electrochemical reduction. Adv. Mater. 2023, 35, 2210658.

    Article  CAS  Google Scholar 

  12. Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.

    Article  CAS  Google Scholar 

  13. Niu, Z. Z.; Chi, L. P.; Wu, Z. Z.; Yang, P. P.; Fan, M. H.; Gao, M. R. CO2-assisted formation of grain boundaries for efficient CO–CO coupling on a derived Cu catalyst. Natl. Sci. Rev. 2023, 2, 20220044.

    Google Scholar 

  14. Lai, W. C.; Qiao, Y.; Wang, Y. N.; Huang, H. W. Stability issues in electrochemical CO2 reduction: Recent advances in fundamental understanding and design strategies. Adv. Mater. 2023, 35, 2306288.

    Article  CAS  Google Scholar 

  15. Huang, M.; Deng, B. W.; Zhao, X. L.; Zhang, Z. Y.; Li, F.; Li, K. L.; Cui, Z. H.; Kong, L. X.; Lu, J. M.; Dong, F. et al. Template-sacrificing synthesis of well-defined asymmetrically coordinated single-atom catalysts for highly efficient CO2 electrocatalytic reduction. ACS Nano 2022, 16, 2110–2119.

    Article  CAS  PubMed  Google Scholar 

  16. Ge, H.; Kuwahara, Y.; Kusu, K.; Bian, Z.; Yamashita H. Ru/HxMoO3−y with plasmonic effect for boosting photothermal catalytic CO2 methanation. Appl. Catal. B: Environ. 2022, 317, 121734.

    Article  CAS  Google Scholar 

  17. He, J. L.; Jin, Z. H.; Gan, F. L.; Xie, L. L.; Guo, J. D.; Zhang, S. H.; Jia, C. Q.; Ma, D.; Dai, Z. D.; Jiang, X. Liquefiable biomass-derived porous carbons and their applications in CO2 capture and conversion. Green Chem. 2022, 24, 3376–3415.

    Article  CAS  Google Scholar 

  18. Zhang, W.; Jia, B. H.; Liu, X.; Ma, T. Y. Surface and interface chemistry in metal-free electrocatalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 5–34.

    Article  CAS  Google Scholar 

  19. Sun, M. Z.; Wong, H. H.; Wu, T.; Lu, Q. Y.; Lu, L.; Chan, C. H.; Chen, B. A.; Dougherty, A. W.; Huang, B. L. Double-dependence correlations in graphdiyne-supported atomic catalysts to promote CO2RR toward the Generation of C2 products. Adv. Energy Mater. 2023, 13, 2203858.

    Article  CAS  Google Scholar 

  20. Jin, S.; Hao, Z. M.; Zhang, K.; Yan, Z. H.; Chen, J. Advances and challenges for the electrochemical reduction of CO2 to CO: From fundamentals to industrialization. Angew. Chem., Int. Ed. 2021, 60, 20627–20648.

    Article  CAS  Google Scholar 

  21. Zhu, J. B.; Xiao, M. L.; Ren, D. Z.; Gao, R.; Liu, X. Z.; Zhang, Z.; Luo, D.; Xing, W.; Su, D.; Yu, A. et al. Quasi-covalently coupled Ni–Cu atomic pair for synergistic electroreduction of CO2. J. Am. Chem. Soc. 2022, 144, 9661–9671.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao, Q. L.; Wang, Y. A.; Li, M.; Zhu, S. Q.; Li, T. H.; Yang, J. X.; Lin, T.; Delmo, E. P.; Wang, Y. N.; Jang, J. et al. Organic frameworks confined Cu single atoms and nanoclusters for tandem electrocatalytic CO2 reduction to methane. SmartMat 2022, 3, 183–193.

    Article  CAS  Google Scholar 

  23. Li, Y. Z.; Chen, J. L.; Chen, S.; Liao, X. L.; Zhao, T. T.; Cheng, F. Y.; Wang, H. In situ confined growth of bismuth nanoribbons with active and robust edge sites for boosted CO2 electroreduction. ACS Energy Lett. 2022, 7, 1454–1461

    Article  CAS  Google Scholar 

  24. Wang, T.; Chen, J. D.; Ren, X. Y.; Zhang, J. C.; Ding, J.; Liu, Y. H.; Lim, K. H.; Wang, J. H.; Li, X. N.; Yang, H. et al. Halogen-incorporated Sn catalysts for selective electrochemical CO2 reduction to formate. Angew. Chem., Int. Ed. 2023, 62, e202211174.

    Article  CAS  Google Scholar 

  25. Xiao, T. S.; Tang, C.; Li, H. B.; Ye, T.; Ba, K.; Gong, P.; Sun, Z. Z. CO2 reduction with coin catalyst. Nano Res. 2022, 15, 3859–3865

    Article  CAS  Google Scholar 

  26. Dai, S.; Huang, T. H.; Liu, W. I.; Hsu, C. W.; Lee, S. W.; Chen, T. Y.; Wang, Y. C.; Wang, J. H.; Wang, K. W. Enhanced CO2 electrochemical reduction performance over Cu@AuCu catalysts at high noble metal utilization efficiency. Nano Lett. 2021, 21, 9293–9300.

    Article  CAS  PubMed  Google Scholar 

  27. Li, Z.; Wu, R.; Zhao, L.; Li, P. B.; Wei, X. X.; Wang, J. J.; Chen, J. S.; Zhang, T. R. Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives. Nano Res. 2021, 14, 3795–3809.

    Article  CAS  Google Scholar 

  28. Vijay, S.; Ju, W.; Brückner, S.; Tsang, S. C.; Strasser, P.; Chan, K. Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat. Catal. 2021, 4, 1024–1031.

    Article  CAS  Google Scholar 

  29. Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy. 2022, 1, 9120027.

    Article  Google Scholar 

  30. Wu, G.; Zheng, X. S.; Cui, P. X.; Jiang, H. Y.; Wang, X. Q.; Qu, Y. T.; Chen, W. X.; Lin, Y.; Li, H.; Han, X. et al. A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 2019, 10, 4855.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cao, B.; Li, F. Z.; Gu, J. Designing Cu-based tandem catalysts for CO2 electroreduction based on mass transport of CO intermediate. ACS Catal. 2022, 12, 9735–9752.

    Article  CAS  Google Scholar 

  32. Chen, S. Y.; Li, X. Q.; Kao, C. W.; Luo, T.; Chen, K. J.; Fu, J. W.; Ma, C.; Li, H. M.; Li, M.; Chan, T. S. et al. Unveiling the proton-feeding effect in sulfur-doped Fe-N-C single-atom catalyst for enhanced CO2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202206233.

    Article  CAS  Google Scholar 

  33. Guo, Y.; Wang, Y. C.; Shen, Y.; Cai, Z. Y.; Li, Z.; Liu, J.; Chen, J. W.; Xiao, C.; Liu, H. C.; Lin, W. B. et al. Tunable cobalt-polypyridyl catalysts supported on metal-organic layers for electrochemical CO2 reduction at low overpotentials. J. Am. Chem. Soc. 2020, 142, 21493–21501.

    Article  CAS  PubMed  Google Scholar 

  34. Feng, J. Q.; Gao, H. S.; Zheng, L. R.; Chen, Z. P.; Zeng, S. J.; Jiang, C. Y.; Dong, H. F.; Liu, L. C.; Zhang, S. J.; Zhang, X. P. A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 2020, 11, 4341.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom Indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

    Article  CAS  Google Scholar 

  36. Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. C.; Dong, J.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

    Article  CAS  Google Scholar 

  37. Ren, B. H.; Wen, G. B.; Gao, R.; Luo, D.; Zhang, Z.; Qiu, W. B.; Ma, Q. Y.; Wang, X.; Cui, Y.; Ricardez-Sandoval, L. et al. Nano-crumples induced Sn–Bi bimetallic interface pattern with moderate electron bank for highly efficient CO2 electroreduction. Nat. Commun. 2022, 13, 2486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, J. W.; Zeng, G. M.; Chen, L. L.; Lai, W. C.; Yuan, Y. L.; Lu, Y. F.; Ma, C.; Zhang, W. H.; Huang, H. W. Tuning the reaction path of CO2 electroreduction reaction on indium single-atom catalyst: Insights into the active sites. Nano Res. 2022, 15, 4014–4022.

    Article  CAS  Google Scholar 

  39. Yuan, Y. L.; Wang, Q. Y.; Qiao, Y.; Chen, X. L.; Yang, Z. L.; Lai, W. C.; Chen, T. W.; Zhang, G. H.; Duan, H. G.; Liu, M. et al. In situ structural reconstruction to generate the active sites for CO2 electroreduction on Bismuth ultrathin nanosheets. Adv. Energy Mater. 2022, 12, 2200970

    Article  CAS  Google Scholar 

  40. Liu, J. Y.; Li, P. S.; Bi, J. H.; Wang, Y.; Zhu, Q. G.; Sun, X. F.; Zhang, J. L.; Liu, Z. M.; Han, B. X. Sm and S co-doping to construct homo-hetero Cu catalysts for synergistic enhancing CO2 electroreduction. Chin. J. Chem. 2023, 41, 1443–1449.

    Article  CAS  Google Scholar 

  41. Wei, Z. M.; Liu, Y. H.; Ding, J.; He, Q. Y.; Zhang, Q.; Zhai, Y. M. Promoting electrocatalytic CO2 reduction to CO via sulfur-doped Co-N-C single-atom catalyst. Chin. J. Chem. 2023, 41, 3553–3559.

    Article  CAS  Google Scholar 

  42. Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zheng, X. S. et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16569–16573.

    Article  CAS  PubMed  Google Scholar 

  43. Peng, H. J.; Tang, M. T.; Liu, X. Y.; Lamoureux, P. S.; Bajdich, M.; Abild-Pedersen, F. The role of atomic carbon in directing electrochemical CO2 reduction to multicarbon products. Energy Environ. Sci. 2021, 14, 473–482.

    Article  CAS  Google Scholar 

  44. Zhu, Y. Z.; Yang, X. X.; Peng, C.; Priest, C.; Mei, Y.; Wu, G. Carbon-supported single metal site catalysts for electrochemical CO2 reduction to CO and beyond. Small 2021, 17, 2005148.

    Article  CAS  Google Scholar 

  45. Zhang, W. J.; Jiang, M. H.; Yang, S. Y.; Hu, Y.; Mu, B.; Tie, Z.; Jin, Z. In-situ grown CuOx nanowire forest on copper foam: A 3D hierarchical and freestanding electrocatalyst with enhanced carbonaceous product selectivity in CO2 reduction. Nano Res. Energy 2022, 1, e9120033

    Article  Google Scholar 

  46. Boppella, R.; Austeria, P. M.; Kim, Y.; Kim, E.; Song, I.; Eom, Y.; Kumar, D. P.; Balamurugan, M.; Sim, E.; Kim, D. H. et al. Pyrrolic N-stabilized monovalent Ni single-atom electrocatalyst for efficient CO2 reduction: Identifying the role of pyrrolic-N and synergistic electrocatalysis. Adv. Funct. Mater. 2022, 32, 2202351.

    Article  CAS  Google Scholar 

  47. Tang, H.; Gu, H. F.; Li, Z. Y.; Chai, J.; Qin, F. J.; Lu, C. Q.; Yu, J. Y.; Zhai, H. Z.; Zhang, L.; Li, X. Y. et al. Engineering the coordination interface of isolated Co atomic sites anchored on N-doped carbon for effective hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2022, 14, 46401–46409.

    Article  CAS  PubMed  Google Scholar 

  48. Hu, Y. N.; Ying, D.; Sun, Z. Y.; Li, B.; Zhou, H. X.; Wang, S.; Hu, X. M.; He, K.; Qu, M.; Chen, W. X. et al. Rational design, application and dynamic evolution of Cu-N-C single-atom catalysts. J. Mater. Chem. A 2022, 10, 21769–21796.

    Article  CAS  Google Scholar 

  49. Su, X. Z.; Jiang, Z. L.; Zhou, J.; Liu, H. J.; Zhou, D. N.; Shang, H. S.; Ni, X. M.; Peng, Z.; Yang, F.; Chen, W. X. et al. Complementary operando spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nat. Commun. 2022, 13, 1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Han, G. F.; Li, F.; Rykov, A. I.; Im, Y. K.; Yu, S. Y.; Jeon, J. P.; Kim, S. J.; Zhou, W.; Ge, R.; Ao, Z. et al. Abrading bulk metal into single atoms. Nat. Nanotechnol. 2022, 17, 403–407.

    Article  CAS  PubMed  Google Scholar 

  51. Yang, T.; Mao, X. N.; Zhang, Y.; Wu, X. P.; Wang, L.; Chu, M. Y.; Pao, C. W.; Yang, S. Z.; Xu, Y.; Huang, X. Q. Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nat. Commun. 2021, 12, 6022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao, K.; Nie, X. W.; Wang, H. Z.; Chen, S.; Quan, X.; Yu, H. T.; Choi, W.; Zhang, G. H.; Kim, B.; Chen, J. G. Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 2020, 11, 2455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, S. L.; Sun, L.; Fan, Q. N.; Zhang, F. L.; Wang, Z. J.; Zou, J. S.; Zhao, S. Y.; Mao, J. F.; Guo, Z. P. Challenges and prospects of lithium-CO2 batteries. Nano Res. Energy 2022, 1, e9120001.

    Article  Google Scholar 

  54. Chen, P. Z.; Zhang, N.; Wang, S. B.; Zhou, T. P.; Tong, Y.; Ao, C. C.; Yan, W. S.; Zhang, L. D.; Chu, W. S.; Wu, C. Z. et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl. Acad. Sci. USA 2019, 116, 6635–6640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tong, Y.; Chen, P. Z.; Zhou, T. P.; Xu, K.; Chu, W. S.; Wu, C.; Xie, Y. A bifunctional hybrid electrocatalyst for oxygen reduction and evolution: Cobalt oxide nanoparticles strongly coupled to B,N-decorated graphene. Angew. Chem., Int. Ed. 2017, 56, 7121–7125.

    Article  CAS  Google Scholar 

  56. Zhao, Y. S.; Yang, N. L.; Yao, H. Y.; Liu, D. B.; Song, L.; Zhu, J.; Li, S. Z.; Gu, L.; Lin, K. F.; Wang, D. Stereodefined codoping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 7240–7244.

    Article  CAS  PubMed  Google Scholar 

  57. Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang, H. H.; Chen, Y. Y.; Cui, X. J.; Wang, G. F.; Cen, Y. L.; Deng, T. S.; Yan, W. J.; Gao, J.; Zhu, S. H.; Olsbye, U. et al. A highly stable copper-based catalyst for clarifying the catalytic roles of Cu0 and Cu+ species in methanol dehydrogenation. Angew. Chem., Int. Ed. 2018, 57, 1836–1840.

    Article  CAS  Google Scholar 

  59. Lee, B. H.; Park, S.; Kim, M.; Sinha, A. K.; Lee, S. C.; Jung, E.; Chang, W. J.; Lee, K. S.; Kim, J. H.; Cho, S. P. et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater., 2019, 18, 620–626.

    Article  CAS  PubMed  Google Scholar 

  60. Wu, Z. H.; Liu, Y. P.; Xing, X. Q.; Yao, L.; Chen, Z. J.; Mo, G.; Zheng, L. R.; Cai, Q.; Wang, H.; Zhong, J. J. et al. A novel SAXS/XRD/XAFS combined technique for in-situ time-resolved simultaneous measurements. Nano Res. 2023, 16, 1123–1131.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Anhui Provincial Department of Education (No. KJ2021A1125), the National Natural Science Foundation of China (No. 12374390), Ningbo 3315 Innovative Teams Program (No. 2019A-14-C), and the member of Youth Innovation Promotion Association Foundation of CAS, China (No. 2023310). The authors thank the BL14W1 in the Shanghai Synchrotron Radiation Facility (SSRF), BL10B and BL12B in the National Synchrotron Radiation Laboratory (NSRL) for help with characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Gao, Jie Lin or Zheng Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Ge, J., Zhang, J. et al. Asymmetrically coordinated main group atomic In-S1N3 interface sites for promoting electrochemical CO2 reduction. Nano Res. 17, 5011–5021 (2024). https://doi.org/10.1007/s12274-024-6513-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6513-9

Keywords

Navigation