Skip to main content
Log in

Investigation of electrochromic device based on multi-step electrodeposited PB films

  • Original Papers
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Prussian blue (PB) is a well-known electrochromic material due to its fast response and high cycle stability. We used the multi-step electrodeposition to prepare the PB films (S-PB) with different thickness. SEM image shows that as-grown film has small particles on its surface, which is beneficial for improving electrochromic properties of thicker PB film. The S-PB film with a thickness of 410 nm shows a high transmittance modulation of 82.04% at λ = 680 nm. S-PB and CeO2-TiO2-Li films were used as working electrode and counter electrode separately to prepare electrochromic devices (ECDs), both of which are inorganic anode materials. At 680 nm wavelength, the device based on double anode materials changes transmittance from 71.25 to 11.71% and the coloration efficiency is 73.5 cm2/C. Moreover, the optical modulation of ECD does not change significantly when performing 10,000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Available upon request.

Code availability

Not applicable.

References

  1. Sapstead RM, Corden N, Hillman AR (2015) Latent fingerprint enhancement via conducting electrochromic copolymer films of pyrrole and 3,4-ethylenedioxy-thiophene on stainless steel. Electrochim Acta 162:119–128. https://doi.org/10.1016/j.electacta.2014.11.061

    Article  CAS  Google Scholar 

  2. Chen YB, Bi ZJ, Li XM, Xu XK, Zhang SD, Hu XM (2017) High-coloration efficiency electrochromic device based on novel porous TiO2@Prussian blue core-shell nanostructures. Electrochim Acta 224:534–540. https://doi.org/10.1016/j.electacta.2016.12.044

    Article  CAS  Google Scholar 

  3. Pang YH, Li XY, Ding HL, Shi GY, Jin LT (2007) Electropolymerization of high quality electrochromic poly(3-alkyl-thiophene)s via a room temperature ionic liquid. Electrochim Acta 52(20):6172–6177. https://doi.org/10.1016/j.electacta.2007.04.015

    Article  CAS  Google Scholar 

  4. Wei YX, Ma YB, Chen M, Liu WM, Li L, Yan Y (2017) Electrochemical investigation of electrochromic device based on WO3 and Ti doped V2O5 films by using electrolyte containing ferrocene. J Electroanal Chem 807:45–51. https://doi.org/10.1016/j.jelechem.2017.11.007

    Article  CAS  Google Scholar 

  5. Granqvist CG (2014) Electrochromics for smart windows: oxide-based thin films and devices. Thin Solid Films 564:1–38. https://doi.org/10.1016/j.tsf.2014.02.002

    Article  CAS  Google Scholar 

  6. Rosseinsky DR, Mortimer RJ (2001) Electrochromic systems and the prospects for devices. Adv Mater 13(11):783–793. https://doi.org/10.1002/1521-4095(200106)13:11%3c783::AID-ADMA783%3e3.0.CO;2-D

    Article  CAS  Google Scholar 

  7. Tajima K, Hotta H, Yamada Y, Okada M, Yoshimura K (2012) Electrochromic switchable mirror glass fabricated using adhesive electrolyte layer. Appl Phys Lett 101(25):251907. https://doi.org/10.1063/1.4772938

    Article  CAS  Google Scholar 

  8. Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier, Amsterdam,. https://doi.org/10.1016/B978-0-444-89930-9.X5000-4

    Article  Google Scholar 

  9. Mortimer RJ (1999) Organic electrochromic materials. Electrochim Acta 44(18):2971–2981. https://doi.org/10.1016/S0013-4686(99)00046-8

    Article  CAS  Google Scholar 

  10. Liao TC, Chen WH, Liao HY, Chen LC (2016) Multicolor electrochromic thin films and devices based on the Prussian blue family nanoparticles. Sol Energy Materials Sol Cell 145:26–34. https://doi.org/10.1016/j.solmat.2015.08.004

    Article  CAS  Google Scholar 

  11. Rowley NM, Mortimer RJ (2002) New electrochromic materials. Scie Prog 85:243–262. https://doi.org/10.3184/003685002783238816

    Article  CAS  Google Scholar 

  12. Lin CF, Hsu CY, Lo HC, Lin CL, Chen LC, Ho KC (2011) A complementary electrochromic system based on a Prussian blue thin film and a heptyl viologen solution. Sol Energy Materials Sol Cell 95(11):3074–3080. https://doi.org/10.1016/j.solmat.2011.06.037

    Article  CAS  Google Scholar 

  13. Wei YX, Chen M, Liu WM, Li L, Yan Y (2017) Electrochemical investigation of electrochromic devices based on NiO and WO3 films using different lithium salts electrolytes. Electrochim Acta 247:107–115. https://doi.org/10.1016/j.electacta.2017.07.016

    Article  CAS  Google Scholar 

  14. Itaya K, Uchida I, Neff VN (1986) Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc Chem Res 19(6):162–168. https://doi.org/10.1021/ar00126a001

    Article  CAS  Google Scholar 

  15. Roig A, Navarro J, Garcia JJ, Vicente F (1994) Voltammetric study of the stability of deposited Prussian blue films against succesive potential cycling. Electrochim Acta 39(3):437–442. https://doi.org/10.1016/0013-4686(94)80083-9

    Article  CAS  Google Scholar 

  16. Demiri S, Najdoski M, Velevska J (2011) A simple chemical method for deposition of electrochromic Prussian blue thin film. Mater Res Bull 46(12):2484–2488. https://doi.org/10.1016/j.materresbull.2011.08.021

    Article  CAS  Google Scholar 

  17. Assis LMN, Andrade JR, Santos LHE, Motheo AJ, Hajduk B, Lapkowski M, Pawlicka A (2015) Spectroscopic and microscopic study of Prussian blue film for electrochromic device application. Electrochim Acta 175:176–183. https://doi.org/10.1016/j.electacta.2015.01.178

    Article  CAS  Google Scholar 

  18. Assis LMN, Leones R, Kanicki J, Pawlicka A, Silva MM (2016) Prussian blue for electrochromic devices. J Electroanal Chem 777:33–39. https://doi.org/10.1016/j.jelechem.2016.05.007

    Article  CAS  Google Scholar 

  19. Ho KC (1999) Cycling and at-rest stabilities of a complementary electrochromic device based on tungsten oxide and Prussian blue thin films. Electrochim Acta 44(18):3227–3235. https://doi.org/10.1016/S0013-4686(99)00041-9

    Article  CAS  Google Scholar 

  20. Cheng KC, Chen FR, Kai JJ (2007) Electrochromic property of nano-composite Prussian blue based thin film. Electrochim Acta 52(9):3330–3335. https://doi.org/10.1016/j.electacta.2006.10.012

    Article  CAS  Google Scholar 

  21. Hong SF, Chen LC (2012) Nano-Prussian blue analogue/PEDOT:PSS composites for electrochromic windows. Sol Energy Materials Sol Cell 104:64–74. https://doi.org/10.1016/j.solmat.2012.04.032

    Article  CAS  Google Scholar 

  22. Elshorbagy MH, Ramadan R, Abdelhady K (2017) Preparation and characterization of spray-deposited efficient Prussian blue electrochromic thin film. Optik 129:130–139. https://doi.org/10.1016/j.ijleo.2016.10.057

    Article  CAS  Google Scholar 

  23. Qian JH, Ma DY, Xu ZP, Li D, Wang JM (2017) Electrochromic properties of hydrothermally grown Prussian blue film and device. Sol Energy Materials Sol Cell 177:9–14. https://doi.org/10.1016/j.solmat.2017.08.016

    Article  CAS  Google Scholar 

  24. Rosario AV, Pereira EC (2002) Comparison of the electrochemical behavior of CeO2-SnO2 and CeO2-TiO2 electrodes produced by the Pechini method. Thin Solid Films 410:1–7. https://doi.org/10.1016/S0040-6090(02)00242-0

    Article  CAS  Google Scholar 

  25. Verma A, Samanta SB, Mehra NC, Bakhshi AK, Agnihotry SA (2005) Sol-gel derived nanocrystalline CeO2-TiO2 coatings for electrochromic windows. Sol Energy Materials Sol Cell 86:85–103. https://doi.org/10.1016/j.solmat.2004.06.008

    Article  CAS  Google Scholar 

  26. Avellaneda CO, Pawlicka A (1998) Preparation of transparent CeO2-TiO2 coatings for electrochromic devices. Thin Solid Films 335(1–2):245–248. https://doi.org/10.1016/S0040-6090(98)00965-1

    Article  CAS  Google Scholar 

  27. Kim CY, Cho SG, Lim TY (2009) Cycle test and degradation analysis of WO3/PC+LiClO4/ CeO2•TiO2 electrochromic device. Sol Energy Materials Sol Cell 93(12):2056–2061. https://doi.org/10.1016/j.solmat.2009.07.007

    Article  CAS  Google Scholar 

  28. Assis LMN, Ponez L, Januszko A, Grudzinski K, Pawlicka A (2013) A green-yellow reflective electrochromic device. Electrochim Acta 111:299–304. https://doi.org/10.1016/j.electacta.2013.07.203

    Article  CAS  Google Scholar 

  29. Li JM, Jiang LB, Chen M, Li XY, Wei YX, Ma YB, Fu ZY, Yan Y (2019) Structure and physical properties evolution of ITO film during amorphouscrystalline transition using a highly effective annealing technique. Ceram Int 45(13):16214–16225. https://doi.org/10.1016/j.ceramint.2019.05.143

    Article  CAS  Google Scholar 

  30. Wei YX, Zhou JL, Zheng JM, Xu CY (2015) Improved stability of electrochromic devices using Ti-doped V2O5 film. Electrochim Acta 166:277–284. https://doi.org/10.1016/j.electacta.2015.03.087

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Ziyi Fu and Youxiu Wei. The first draft of the manuscript was written by Ziyi Fu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yue Yan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 654 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Z., Wei, Y., Liu, W. et al. Investigation of electrochromic device based on multi-step electrodeposited PB films. Ionics 27, 4419–4427 (2021). https://doi.org/10.1007/s11581-021-04156-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04156-0

Keywords

Navigation