Skip to main content
Log in

TiO2 nanofiber-supported copper nanoparticle catalysts for highly efficient methane conversion to C1 oxygenates under mild conditions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The selective oxidation of methane under mild conditions remains the “Holy Grail of Catalysis”. The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers. Copper nanoparticles were loaded onto TiO2 nanofibers using the photo-deposition method. The resulting catalysts were found to effectively convert methane into C1 oxygenated products under mild conditions. Compared with previously reported catalysts, it delivers a superior performance of up to 2510.7 mmol·gCu−1·hr−1 productivity with a selectivity of around 100% at 80 °C for 5 min. Microstructure characterizations and density functional theory (DFT) calculations indicate that TiO2 in the mixed phase of anatase and rutile significantly increases the Cu+/Cu0 ratio of the supported Cu species, and this ratio is linearly related to the formation rate of oxygen-containing species. The Cu1 site promotes the generation of active O species from H2O2 dissociation on Cu2O (111). These active O species reduce the energy barrier for breaking the C–H bond of CH4, thus boosting the catalytic activity. The methane conversion mechanism was proposed as a methyl radical pathway to form CH3OH and CH3OOH, and then the generated CH3OH is further oxidized to HOCH2OOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, X.; Chen, X. Y.; Fu, C.; Yu, Q. B.; Zheng, X. S.; Fang, F.; Liu, Y. X.; Zhu, J. F.; Zhang, W. H.; Huang, W. X. Molecular oxygen enhances H2O2 utilization for the photocatalytic conversion of methane to liquid-phase oxygenates. Nat. Commun. 2022, 13, 6677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen, F. Q.; Zheng, W.; Zhu, N.; Cheng, D. G.; Zhan, X. L. Oxidative coupling of methane over Na-W-Mn-Zr-S-P/SiO2 catalyst: Effect of S, P addition on the catalytic performance. Catal. Lett. 2008, 125, 348–351.

    Article  CAS  Google Scholar 

  3. Lunsford, J. H. The catalytic oxidative coupling of methane. Angew. Chem. Int. Ed. Engl. 1995, 34, 970–980.

    Article  CAS  Google Scholar 

  4. Kwapien, K.; Paier, J.; Sauer, J.; Geske, M.; Zavyalova, U.; Horn, R.; Schwach, P.; Trunschke, A.; Schlögl, R. Sites for methane activation on lithium-doped magnesium oxide surfaces. Angew. Chem., Int. Ed. 2014, 53, 8774–8778.

    Article  CAS  Google Scholar 

  5. Xu, Y. D.; Bao, X. H.; Lin, L. W. Direct conversion of methane under nonoxidative conditions. J. Catal. 2003, 216, 386–395.

    Article  CAS  Google Scholar 

  6. Hutchings, G. J.; Scurrell, M. S.; Woodhouse, J. R. Oxidative coupling of methane using oxide catalysts. Chem. Soc. Rev. 1989, 18, 251–283.

    Article  CAS  Google Scholar 

  7. Guo, X. G.; Fang, G. Z.; Li, G.; Ma, H.; Fan, H. J.; Yu, L.; Ma, C.; Wu, X.; Deng, D. H.; Wei, M. M. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 2014, 344, 616–619.

    Article  CAS  PubMed  Google Scholar 

  8. Yu, X.; Zholobenko, V. L.; Moldovan, S.; Hu, D.; Wu, D.; Ordomsky, V. V.; Khodakov, A. Y. Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. Nat. Energy 2020, 5, 511–519.

    Article  CAS  Google Scholar 

  9. Schulz, H. Short history and present trends of Fischer-Tropsch synthesis. Appl. Catal. A: Gen. 1999, 186, 3–12.

    Article  CAS  Google Scholar 

  10. Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 2017, 356, 523–527.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, X. W.; Peng, M.; Cai, X. B.; Chen, Y. L.; Jia, Z. M.; Deng, Y. C.; Mei, B. B.; Jiang, Z.; Xiao, D. Q.; Wen, X. D. et al. Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nat. Commun. 2021, 12, 2664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, X. W.; Qin, X. T.; Jiao, Y. Y.; Peng, M.; Diao, J. Y.; Ren, P. J.; Li, C. Y.; Xiao, D. Q.; Wen, X. D.; Jiang, Z. et al. Structure-dependence and metal-dependence on atomically dispersed Ir catalysts for efficient n-butane dehydrogenation. Nat. Commun. 2023, 14, 2588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ab Rahim, M. H.; Forde, M. M.; Jenkins, R. L.; Hammond, C.; He, Q.; Dimitratos, N.; Lopez-Sanchez, J. A.; Carley, A. F.; Taylor, S. H.; Willock, D. J. et al. Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles. Angew. Chem., Int. Ed. 2013, 52, 1280–1284.

    Article  CAS  Google Scholar 

  14. Hammond, C.; Forde, M. M.; Ab Rahim, M. H.; Thetford, A.; He, Q.; Jenkins, R. L.; Dimitratos, N.; Lopez-Sanchez, J. A.; Dummer, N. F.; Murphy, D. M. et al. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angew. Chem., Int. Ed. 2012, 51, 5129–5133.

    Article  CAS  Google Scholar 

  15. Armstrong, R. D.; Peneau, V.; Ritterskamp, N.; Kiely, C. J.; Taylor, S. H.; Hutchings, G. J. The role of copper speciation in the low temperature oxidative upgrading of short chain alkanes over Cu/ZSM-5 catalysts. ChemPhysChem 2018, 19, 469–478.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, W. S.; Shi, Y. N.; Jiang, Y. H.; Zhang, X. F.; Long, C.; An, P. F.; Zhu, Y. F.; Shao, S. X.; Yan, Z.; Li, G. D. et al. Fe-O clusters anchored on nodes of metal-organic frameworks for direct methane oxidation. Angew. Chem., Int. Ed. 2021, 60, 5811–5815.

    Article  CAS  Google Scholar 

  17. Yang, L.; Huang, J. X.; Ma, R.; You, R.; Zeng, H.; Rui, Z. B. Metal-organic framework-derived IrO2/CuO catalyst for selective oxidation of methane to methanol. ACS Energy Lett. 2019, 4, 2945–2951.

    Article  CAS  Google Scholar 

  18. Shen, Q. K.; Cao, C. Y.; Huang, R. K.; Zhu, L.; Zhou, X.; Zhang, Q. H.; Gu, L.; Song, W. G. Single chromium atoms supported on titanium dioxide nanoparticles for synergic catalytic methane conversion under mild condition. Angew. Chem., Int. Ed. 2020, 59, 1216–1219.

    Article  CAS  Google Scholar 

  19. Agarwal, N.; Freakley, S. J.; McVicker, R. U.; Althahban, S. M.; Dimitratos, N.; He, Q.; Morgan, D. J.; Jenkins, R. L.; Willock, D. J.; Taylor, S. H. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 2017, 358, 223–227.

    Article  CAS  PubMed  Google Scholar 

  20. Mahlaba, S. V. L.; Hytoolakhan Lal Mahomed, N.; Govender, A.; Guo, J. F.; Leteba, G. M.; Cilliers, P. L.; van Steen, E. Platinum-catalysed selective aerobic oxidation of methane to formaldehyde in the presence of liquid water. Angew. Chem., Int. Ed. 2022, 61, e202206841.

    Article  CAS  Google Scholar 

  21. Zhang, P. Y.; Liu, H. Y.; Li, X. M. Photo-reduction synthesis of Cu nanoparticles as Plasmon-driven non-semiconductor photocatalyst for overall water splitting. Appl. Surf. Sci. 2021, 535, 147720.

    Article  CAS  Google Scholar 

  22. Wu, X. Y.; Zeng, Y.; Liu, H. C.; Zhao, J. Q.; Zhang, T. R.; Wang, S. L. Noble-metal-free dye-sensitized selective oxidation of methane to methanol with green light (550 nm). Nano Res. 2021, 14, 4584–4590.

    Article  CAS  Google Scholar 

  23. Guo, X. Y.; Hu, Z.; Lv, J. X.; Li, H.; Zhang, Q. H.; Gu, L.; Zhou, W.; Zhang, J. W.; Hu, S. Fine- tuning of Pd-Rh core–shell catalysts by interstitial hydrogen doping for enhanced methanol oxidation. Nano Res. 2022, 15, 1288–1294.

    Article  CAS  Google Scholar 

  24. Guo, H. M.; Wu, L.; Nie, S. Y.; Yang, D. R.; Wang, X. Ultrathin zirconium-porphyrin based nanobelts as photo-coupled electrocatalysis for CH4 oxidation to CO. Nano Res. 2023, 16, 12641–12646.

    Article  CAS  Google Scholar 

  25. Zeng, F.; Zhang, J.; Xu, R.; Zhang, R. J.; Ge, J. P. Highly dispersed Ni/MgO-mSiO2 catalysts with excellent activity and stability for dry reforming of methane. Nano Res. 2022, 15, 5004–5013.

    Article  CAS  Google Scholar 

  26. Nie, J.; Patrocinio, A. O. T.; Hamid, S.; Sieland, F.; Sann, J.; Xia, S.; Bahnemann, D. W.; Schneider, J. New insights into the plasmonic enhancement for photocatalytic H2 production by Cu-TiO2 upon visible light illumination. Phys. Chem. Chem. Phys. 2018, 20, 5264–5273.

    Article  CAS  PubMed  Google Scholar 

  27. DeSario, P. A.; Pietron, J. J.; Brintlinger, T. H.; McEntee, M.; Parker, J. F.; Baturina, O.; Stroud, R. M.; Rolison, D. R. Oxidation-stable plasmonic copper nanoparticles in photocatalytic TiO2 nanoarchitectures. Nanoscale 2017, 9, 11720–11729.

    Article  CAS  PubMed  Google Scholar 

  28. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  29. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  30. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  PubMed  Google Scholar 

  31. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  32. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  PubMed  Google Scholar 

  33. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  CAS  PubMed  Google Scholar 

  34. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  35. Qiu, X. Q.; Miyauchi, M.; Sunada, K.; Minoshima, M.; Liu, M.; Lu, Y.; Li, D.; Shimodaira, Y.; Hosogi, Y.; Kuroda, Y. et al. Hybrid CuxO/TiO2 nanocomposites as risk-reduction materials in indoor environments. ACS Nano 2012, 6, 1609–1618.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Q. Y.; Li, Y.; Ackerman, E. A.; Gajdardziska-Josifovska, M.; Li, H. L. Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels. Appl. Catal. A: Gen. 2011, 400, 195–202.

    Article  CAS  Google Scholar 

  37. Deiana, C.; Fois, E.; Coluccia, S.; Martra, G. Surface structure of TiO2 P25 nanoparticles: Infrared study of hydroxy groups on coordinative defect sites. J. Phys. Chem. C 2010, 114, 21531–21538.

    Article  CAS  Google Scholar 

  38. Zhang, J.; Li, M. J.; Feng, Z. C.; Chen, J.; Li, C. UV Raman spectroscopic study on TiO2. I. phase transformation at the surface and in the bulk. J. Phys. Chem. B 2006, 110, 927–935.

    Article  CAS  PubMed  Google Scholar 

  39. Espinós, J. P.; Morales, J.; Barranco, A.; Caballero, A.; Holgado, J. P.; González-Elipe, A. R. Interface effects for Cu, CuO, and Cu2O Deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts. J. Phys. Chem. B 2002, 106, 6921–6929.

    Article  Google Scholar 

  40. Dan, Z. H.; Yang, Y. L.; Qin, F. X.; Wang, H.; Chang, H. Facile fabrication of Cu2O nanobelts in ethanol on nanoporous Cu and their photodegradation of methyl orange. Materials 2018, 11, 446.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhen, W. L.; Jiao, W. J.; Wu, Y. Q.; Jing, H. W.; Lu, G. X. The role of a metallic copper interlayer during visible photocatalytic hydrogen generation over a Cu/Cu2O/Cu/TiO2 catalyst. Catal. Sci. Technol. 2017, 7, 5028–5037.

    Article  CAS  Google Scholar 

  42. Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350–5354.

    Article  CAS  Google Scholar 

  43. Zhou, J. J.; Pan, F.; Yao, Q. F.; Zhu, Y. Q.; Ma, H. R.; Niu, J. F.; Xie, J. P. Achieving efficient and stable electrochemical nitrate removal by in-situ reconstruction of Cu2O/Cu electroactive nanocatalysts on Cu foam. Appl. Catal. B: Environ. 2022, 317, 121811.

    Article  CAS  Google Scholar 

  44. Jin, Z.; Wang, L.; Zuidema, E.; Mondal, K.; Zhang, M.; Zhang, J.; Wang, C. T.; Meng, X. J.; Yang, H. Q.; Mesters, C. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 2020, 367, 193–197.

    Article  CAS  PubMed  Google Scholar 

  45. Fang, G. Q.; Hu, J. N.; Tian, L. C.; Liang, J. X.; Lin, J.; Li, L.; Zhu, C.; Wang, X. D. Zirconium-oxo nodes of MOFs with tunable electronic properties provide effective OH species for enhanced methane hydroxylation. Angew. Chem., Int. Ed. 2022, 61, e202205077.

    Article  CAS  Google Scholar 

  46. Fan, J. C.; Liang, S. X.; Zhu, K. X.; Mao, J.; Cui, X. J.; Ma, C.; Yu, L.; Deng, D. H. Boosting room-temperature conversion of methane via confining Cu atoms in ultrathin Ru nanosheets. Chem Catal. 2022, 2, 2253–2261.

    Article  CAS  Google Scholar 

  47. Li, W. C.; Li, Z.; Zhang, H.; Liu, P. X.; Xie, Z. A.; Song, W. Y.; Liu, B. J.; Zhao, Z. Efficient catalysts of surface hydrophobic Cu-BTC with coordinatively unsaturated Cu(I) sites for the direct oxidation of methane. Proc. Natl. Acad. Sci. USA 2023, 120, e2206619120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu, L. N.; Tian, Z. Y.; Qin, W. DFT study on CO catalytic oxidation mechanism on the defective Cu2O (111) surface. J. Phys. Chem. C 2018, 122, 16733–16740.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 92145301, 91845201, 22002094, 22102106, and 22309061) and the Natural Science Foundation of Jilin Province (No. YDZJ202201ZYTS360).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hang Zhang, Hongfei Shi or Zhen Zhao.

Electronic Supplementary Material

12274_2023_6356_MOESM1_ESM.pdf

TiO2 nanofiber-supported copper nanoparticle catalysts for highly efficient methane conversion to C1 oxygenates under mild conditions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Ren, Y., Xie, Z. et al. TiO2 nanofiber-supported copper nanoparticle catalysts for highly efficient methane conversion to C1 oxygenates under mild conditions. Nano Res. 17, 3844–3852 (2024). https://doi.org/10.1007/s12274-023-6356-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6356-9

Keywords

Navigation