Skip to main content
Log in

Highly dispersed Ni/MgO-mSiO2 catalysts with excellent activity and stability for dry reforming of methane

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Highly dispersed Ni catalyst and alkaline promoters supported by mesoporous SiO2 nanospheres were synthesized and applied as an active and stable catalyst for dry reforming of methane (DRM). The as-prepared Ni/MgO-mSiO2 catalyst showed stable conversions of CH4 and CO2 around 82% and 85% in 120 h of DRM reaction, which was superior in performance compared to similar catalysts in literatures. Based on the transmission electron microscope (TEM) images, energy-dispersive spectroscopy (EDS), CO-pulse adsorption, temperature programmed reduction of the oxidized catalysts by hydrogen (H2-TPR), X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption of CO2 (CO2-TPD), and thermal gravitational analysis (TGA), the promotion effect of MgO on the Ni catalyst was systematically studied. The introduction of Mg2+ in synthesis enhanced the interaction between Ni2+ and mSiO2, which led to a high dispersion of active centers and a strong “metal-support” interactions to inhibit the sintering and deactivation of Ni at reaction temperatures. On the other hand, Ni and MgO nanoparticles formed adjacently on mSiO2, where the “Ni-MgO” interface not only improved the Ni0 distribution and promoted the cracking of CH4 but also promoted the activation of CO2 and the elimination of carbon deposits. A high and stable conversion of CH4 and CO2 were then achieved through the synergistic effect of Ni catalyst, MgO promoter, and mSiO2 support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He, M. Y.; Sun, Y. H.; Han, B. X. Green carbon science: Scientific basis for integrating carbon resource processing, utilization, and recycling. Angew. Chem., Int. Ed. 2013, 52, 9620–9633.

    Article  CAS  Google Scholar 

  2. Melikoglu, M. Shale gas: Analysis of its role in the global energy market. Renew. Sust. Energy Rev. 2014, 37, 460–468.

    Article  Google Scholar 

  3. Olah, G. A.; Surya Prakash, G. K.; Goeppert, A. Anthropogenic chemical carbon cycle for a sustainable future. J. Am. Chem. Soc. 2011, 133, 12881–12898.

    Article  CAS  Google Scholar 

  4. Olah, G. A. Towards oil independence through renewable methanol chemistry. Angew. Chem., Int. Ed. 2013, 52, 104–107.

    Article  CAS  Google Scholar 

  5. Chen, W. Y.; Liu, X. M.; Han, B.; Liang, S. J.; Deng, H.; Lin, Z. Boosted photoreduction of diluted CO2 through oxygen vacancy engineering in NiO nanoplatelets. Nano Res. 2021, 14, 730–737.

    Article  CAS  Google Scholar 

  6. Li, Z. H.; Shi, R.; Zhao, J. Q.; Zhang, T. R. Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system. Nano Res. 2021, 14, 4828–4832.

    Article  CAS  Google Scholar 

  7. Wu, X. Y.; Zeng, Y.; Liu, H. C.; Zhao, J. Q.; Zhang, T. R.; Wang, S. L. Noble-metal-free dye-sensitized selective oxidation of methane to methanol with green light (550 nm). Nano Res. 2021, 14, 4584–4590.

    Article  CAS  Google Scholar 

  8. Xie, H. P.; Lan, C.; Chen, B.; Wang, F. H.; Liu, T. Noble-metal-free catalyst with enhanced hydrogen evolution reaction activity based on granulated Co-doped Ni-Mo phosphide nanorod arrays. Nano Res. 2020, 13, 3321–3329.

    Article  CAS  Google Scholar 

  9. Zhang, M.; Hu, Z.; Gu, L.; Zhang, Q. H.; Zhang, L. H.; Song, Q.; Zhou, W.; Hu, S. Electrochemical conversion of CO2 to syngas with a wide range of CO/H2 ratio over Ni/Fe binary single-atom catalysts. Nano Res. 2020, 13, 3206–3211.

    Article  CAS  Google Scholar 

  10. Bhavani, A. G.; Kim, W. Y.; Lee, J. S. Barium substituted lanthanum manganite perovskite for CO2 reforming of methane. ACS Catal. 2013, 3, 1537–1544.

    Article  CAS  Google Scholar 

  11. Beheshti Askari, A.; Al Samarai, M.; Morana, B.; Tillmann, L.; Pfänder, N.; Wandzilak, A.; Watts, B.; Belkhou, R.; Muhler, M.; DeBeer, S. In situ X-ray microscopy reveals particle dynamics in a NiCo dry methane reforming catalyst under operating conditions. ACS Catal. 2020, 10, 6223–6230.

    Article  CAS  Google Scholar 

  12. Wang, W.; Wang, S. P.; Ma, X. B.; Gong, J. H. Recent advances in catalytichydrogenation of carbon dioxide. Chem. Soc. Rev. 2011, 40, 3703–3727.

    Article  CAS  Google Scholar 

  13. Pakhare, D.; Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 43, 7813–7837.

    Article  CAS  Google Scholar 

  14. Sheng, K. F.; Luan, D.; Jiang, H.; Zeng, F.; Wei, B.; Pang, F.; Ge, J. P. NixCoy nanocatalyst supported by ZrO2 hollow sphere for dry reforming of methane: Synergetic catalysis by Ni and Co in alloy. ACS Appl. Mater. Interfaces 2019, 11, 24078–24087.

    Article  CAS  Google Scholar 

  15. Tian, J. Q.; Ma, B.; Bu, S. Y.; Yuan, Q. H.; Zhao, C. One-pot synthesis of highly sintering- and coking-resistant Ni nanoparticles encapsulated in dendritic mesoporous SiO2 for methane dry reforming. Chem. Commun. 2018, 54, 13993–13996.

    Article  CAS  Google Scholar 

  16. Horváth, Á.; Baán, K.; Varga, E.; Oszkó, A.; Vágó, Á.; Törő, M.; Erdőhelyi, A. Dry reforming of CH4 on Co/Al2O3 catalysts reduced at different temperatures. Catal. Today 2017, 281, 233–240.

    Article  CAS  Google Scholar 

  17. Ewbank, J. L.; Kovarik, L.; Kenvin, C. C.; Sievers, C. Effect of preparation methods on the performance of Co/Al2O3 catalysts for dry reforming of methane. Green Chem. 2014, 16, 885–896.

    Article  CAS  Google Scholar 

  18. Soykal, I. I.; Sohn, H.; Ozkan, U. S. Effect of support particle size in steam reforming of ethanol over Co/CeO2 catalysts. ACS Catal. 2012, 2, 2335–2348.

    Article  CAS  Google Scholar 

  19. Kim, S. M.; Abdala, P. M.; Margossian, T.; Hosseini, D.; Foppa, L.; Armutlulu, A.; van Beek, W.; Comas-Vives, A.; Copéret, C.; Müller, C. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts. J. Am. Chem. Soc. 2017, 139, 1937–1949.

    Article  CAS  Google Scholar 

  20. Theofanidis, S. A.; Galvita, V. V.; Poelman, H.; Marin, G. B. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe. ACS Catal. 2015, 5, 3028–3039.

    Article  CAS  Google Scholar 

  21. Li, S. R.; Gong, J. L. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions. Chem. Soc. Rev. 2014, 43, 7245–7256.

    Article  CAS  Google Scholar 

  22. Wang, Y.; Yao, L.; Wang, S. H.; Mao, D. H.; Hu, C. W. Low-temperature catalytic CO2 dry reforming of methane on Ni-based catalysts: A review. Fuel Process. Technol. 2018, 169, 199–206.

    Article  CAS  Google Scholar 

  23. Usman, M.; Wan Daud, W. M. A.; Abbas, H. F. Dry reforming of methane: Influence of process parameters—A review. Renew. Sust. Energy Rev. 2015, 45, 710–744.

    Article  CAS  Google Scholar 

  24. Abdulrasheed, A.; Jalil, A. A.; Gambo, Y.; Ibrahim, M.; Hambali, H. U.; Shahul Hamid, M. Y. A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renew. Sust. Energy Rev. 2019, 108, 175–193.

    Article  CAS  Google Scholar 

  25. Singh, S.; Zubenko, D.; Rosen, B. A. Influence of LaNiO3 shape on its solid-phase crystallization into coke-free reforming catalysts. ACS Catal. 2016, 6, 4199–4205.

    Article  CAS  Google Scholar 

  26. Nair, M. M.; Kaliaguine, S.; Kleitz, F. Nanocast LaNiO3 perovskites as precursors for the preparation of coke-resistant dry reforming catalysts. ACS Catal. 2014, 4, 3837–3846.

    Article  CAS  Google Scholar 

  27. Aramouni, N. A. K.; Touma, J. G.; Tarboush, B. A.; Zeaiter, J.; Ahmad, M. N. Catalyst design for dry reforming of methane: Analysis review. Renew. Sust. Energy Rev. 2018, 82, 2570–2585.

    Article  CAS  Google Scholar 

  28. Abou Rached, J. A.; Cesario, M. R.; Estephane, J.; Tidahy, H. L.; Gennequin, C.; Aouad, S.; Aboukaïs, A.; Abi-Aad, E. Effects of cerium and lanthanum on Ni-based catalysts for CO2 reforming of toluene. J. Environ. Chem. Eng. 2018, 6, 4743–4754.

    Article  CAS  Google Scholar 

  29. Zhang, L.; Wang, X. G.; Chen, C. J.; Zou, X. J.; Shang, X. F.; Ding, W. Z.; Lu, X. G. Investigation of mesoporous NiAl2O4/MOx (M = La, Ce, Ca, Mg)-γ-Al2O3 nanocomposites for dry reforming of methane. RSC Adv. 2017, 7, 33143–33154.

    Article  CAS  Google Scholar 

  30. Liu, H. R.; Wierzbicki, D.; Debek, R.; Motak, M.; Grzybek, T.; Da Costa, P.; Gálvez, M. E. La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures. Fuel 2016, 182, 8–16.

    Article  CAS  Google Scholar 

  31. Xu, L. L.; Song, H. L.; Chou, L. J. Carbon dioxide reforming of methane over ordered mesoporous NiO-MgO-Al2O3 composite oxides. Appl. Catal. B 2011, 108–109, 177–190.

    Article  CAS  Google Scholar 

  32. Zhao, Y. C.; Liu, B. S.; Amin, R. CO2 reforming of CH4 over MgO-doped Ni/MAS-24 with microporous ZSM-5 structure. Ind. Eng. Chem. Res. 2016, 55, 6931–6942.

    Article  CAS  Google Scholar 

  33. Zeng, Y. X.; Wang, L.; Wu, C. F.; Wang, J. Q.; Shen, B. X.; Tu, X. Low temperature reforming of biogas over K-, Mg- and Ce- promoted Ni/Al2O3 catalysts for the production of hydrogen rich syngas: Understanding the plasma-catalytic synergy. Appl. Catal. B 2018, 224, 469–478.

    Article  CAS  Google Scholar 

  34. Feng, X. Q.; Liu, J.; Zhang, P.; Zhang, Q.; Xu, L. Y.; Zhao, L. P.; Song, X. F.; Gao, L. Highly coke resistant Mg-Ni/Al2O3 catalyst prepared via a novel magnesiothermic reduction for methane reforming catalysis with CO2: The unique role of Al-Ni intermetallics. Nanoscale 2019, 11, 1262–1272.

    Article  CAS  Google Scholar 

  35. Taherian, Z.; Yousefpour, M.; Tajally, M.; Khoshandam, B. A comparative study of ZrO2, Y2O3 and Sm2O3 promoted Ni/SBA-15 catalysts for evaluation of CO2/methane reforming performance. Int. J. Hydrogen Energy 2017, 42, 16408–16420.

    Article  CAS  Google Scholar 

  36. Sengupta, S.; Deo, G. Modifying alumina with CaO or MgO in supported Ni and Ni-Co catalysts and its effect on dry reforming of CH4. J. CO2Util. 2015, 10, 67–77.

    Article  CAS  Google Scholar 

  37. Mo, W. L.; Ma, F. Y.; Ma, Y. Y.; Fan, X. The optimization of Ni-Al2O3 catalyst with the addition of La2O3 for CO2-CH4 reforming to produce syngas. Int. J. Hydrogen Energy 2019, 44, 24510–24524.

    Article  CAS  Google Scholar 

  38. Múnera, J.; Faroldi, B.; Frutis, E.; Lombardo, E.; Cornaglia, L.; Carrazán, S. G. Supported Rh nanoparticles on CaO-SiO2 binary systems for the reforming of methane by carbon dioxide in membrane reactors. Appl. Catal. A 2014, 474, 114–124.

    Article  CAS  Google Scholar 

  39. Singha, R. K.; Yadav, A.; Shukla, A.; Iqbal, Z.; Pendem, C.; Sivakumar, K.; Bal, R. Promoting effect of CeO2 and MgO for CO2 reforming of methane over Ni-ZnO catalyst. ChemistrySelect 2016, 1, 3075–3085.

    Article  CAS  Google Scholar 

  40. Yan, X. L.; Hu, T.; Liu, P.; Li, S.; Zhao, B. R.; Zhang, Q.; Jiao, W. Y.; Chen, S.; Wang, P. F.; Lu, J. J. et al. Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: Effect of interfacial structure of Ni/CeO2 on SiO2. Appl. Catal. B 2019, 246, 221–231.

    Article  CAS  Google Scholar 

  41. Rezaei, M.; Alavi, S. M. Dry reforming over mesoporous nanocrystalline 5% Ni/M-MgAl2O4 (M: CeO2, ZrO2, La2O3) catalysts. Int. J. Hydrogen Energy 2019, 44, 16516–16525.

    Article  CAS  Google Scholar 

  42. Khajenoori, M.; Rezaei, M.; Meshkani, F. Dry reforming over CeO2-promoted Ni/MgO nano-catalyst: Effect of Ni loading and CH4/CO2 molar ratio. J. Ind. Eng. Chem. 2015, 21, 717–722.

    Article  CAS  Google Scholar 

  43. Abdulrasheed, A. A.; Jalil, A. A.; Hamid, M. Y. S.; Siang, T. J.; Abdullah, T. A. T. Dry reforming of CH4 over stabilized Ni-La@KCC-1 catalyst: Effects of La promoter and optimization studies using RSM. J. CO2Util. 2020, 37, 230–239.

    Article  CAS  Google Scholar 

  44. Lu, Y.; Guo, D.; Zhao, Y. F.; Moyo, P. S.; Zhao, Y. J.; Wang, S. P.; Ma, X. B. Enhanced catalytic performance of Nix-V@HSS catalysts for the DRM reaction: The study of interfacial effects on Ni-VOx structure with a unique yolk-shell structure. J. Catal. 2021, 396, 65–80.

    Article  CAS  Google Scholar 

  45. Polshettiwar, V.; Cha, D.; Zhang, X. X.; Basset, J. M. High-surfacearea silica nanospheres (KCC-1) with a fibrous morphology. Angew. Chem., Int. Ed. 2010, 49, 9652–9656.

    Article  CAS  Google Scholar 

  46. Peng, H. G.; Zhang, X. H.; Han, X.; You, X. J.; Lin, S. X.; Chen, H.; Liu, W. M.; Wang, X.; Zhang, N.; Wang, Z. et al. Catalysts in coronas: A surface spatial confinement strategy for high-performance catalysts in methane dry reforming. ACS Catal. 2019, 9, 9072–9080.

    Article  CAS  Google Scholar 

  47. Alipour, Z.; Rezaei, M.; Meshkani, F. Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane. J. Ind. Eng. Chem. 2014, 20, 2858–2863.

    Article  CAS  Google Scholar 

  48. Wu, P.; Tao, Y. W.; Ling, H. J.; Chen, Z. B.; Ding, J.; Zeng, X.; Liao, X. Z.; Stampfl, C.; Huang, J. Cooperation of Ni and CaO at interface for CO2 reforming of CH4: A combined theoretical and experimental study. ACS Catal. 2019, 9, 10060–10069.

    Article  CAS  Google Scholar 

  49. Liu, Q.; Zhong, Z. Y.; Gu, F. N.; Wang, X. Y.; Lu, X. P.; Li, H. F.; Xu, G. W.; Su, F. B. CO methanation on ordered mesoporous Ni-Cr-Al catalysts: Effects of the catalyst structure and Cr promoter on the catalytic properties. J. Catal. 2016, 337, 221–232.

    Article  CAS  Google Scholar 

  50. Dou, J.; Zhang, R. G.; Hao, X. B.; Bao, Z. H.; Wu, T. P.; Wang, B. J.; Yu, F. Sandwiched SiO2@Ni@ZrO2 as a coke resistant nanocatalyst for dry reforming of methane. Appl. Catal. B 2019, 254, 612–623.

    Article  CAS  Google Scholar 

  51. Baudouin, D.; Margossian, T.; Rodemerck, U.; Webb, P. B.; Veyre, L.; Krumeich, F.; Candy, J. P.; Thieuleux, C.; Copéret, C. Origin of the improved performance in lanthanum-doped silica-supported Ni catalysts. ChemCatChem 2017, 9, 586–596.

    Article  CAS  Google Scholar 

  52. Bian, Z. F.; Kawi, S. Sandwich-like silica@Ni@silica multicore—shell catalyst for the low-temperature dry reforming of methane: Confinement effect against carbon formation. ChemCatChem 2018, 10, 320–328.

    Article  CAS  Google Scholar 

  53. Lovell, E. C.; Fuller, A.; Scott, J.; Amal, R. Enhancing Ni-SiO2 catalysts for the carbon dioxide reforming of methane: Reduction-oxidation-reduction pre-treatment. Appl. Catal. B 2016, 199, 155–165.

    Article  CAS  Google Scholar 

  54. Xu, L. L.; Song, H. L.; Chou, L. J. One-pot synthesis of ordered mesoporous NiO-CaO-Al2O3 composite oxides for catalyzing CO2 reforming of CH4. ACS Catal. 2012, 2, 1331–1342.

    Article  CAS  Google Scholar 

  55. Kalai, D. Y.; Stangeland, K.; Jin, Y. Y.; Tucho, W. M.; Yu, Z. X. Biogas dry reforming for syngas production on La promoted hydrotalcite-derived Ni catalysts. Int. J. Hydrogen Energy 2018, 43, 19438–19450.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by SINOPEC Research Institute of Petroleum Processing, the National Key Research and Development Program of China (No. 2016YFB0701103) and the National Natural Science Foundation of China (Nos. 21972046 and 22172054).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Run Xu or Jianping Ge.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, F., Zhang, J., Xu, R. et al. Highly dispersed Ni/MgO-mSiO2 catalysts with excellent activity and stability for dry reforming of methane. Nano Res. 15, 5004–5013 (2022). https://doi.org/10.1007/s12274-022-4180-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4180-2

Keywords

Navigation