Skip to main content
Log in

Structural engineered living materials

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Biological structural materials not only exhibit remarkable mechanical properties but also often embody dynamic characteristics such as environmental responsiveness, autonomy, and self-healing, which are difficult to achieve in conventional engineering materials. By merging materials science, synthetic biology, and other disciplines, engineered living materials (ELMs) provide a promising solution to combine living organisms with abiotic components, thus facilitating the construction of functional “living” materials. Like natural materials, ELMs possess vitality and hold immense application potential in areas such as medicine, electronics, and construction, captivating increasing research attention recently. As an emerging branch of ELMs, structural ELMs aim to mimic living biological structural materials by achieving desired mechanical performance while maintaining important “living” characteristics. Here we summarize the recent progress and provide our perspectives for this emerging research area. We first summarize the superiority of structural ELMs by reviewing biological structural materials and biomimetic material design strategies. Subsequently, we provide a systematic discussion on the definition and classifications of structural ELMs, their mechanical performance, and physiological behaviors. Finally, we summarize some critical challenges faced by structural ELMs and highlight directions of future development. We hope this review article can provide a timely summary of the state of the art and relevant perspectives for future development of structural ELMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kakani, S. L.; Kakani, A. Material Science. Delhi: New Age International Publishers, 2004.

    Google Scholar 

  2. Han, S. Y.; Chen, F. M.; Yu, Y.; Zheng, Z. F.; Chen, L. T.; Wang, G. Bamboo-inspired renewable, lightweight, and vibration-damping laminated structural materials for the floor of a railroad car. ACS Appl. Mater. Interfaces 2022, 14, 42645–42655.

    Article  CAS  PubMed  Google Scholar 

  3. Liu, Y. Q.; He, K.; Chen, G.; Leow, W. R.; Chen, X. D. Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 2017, 117, 12893–12941.

    Article  CAS  PubMed  Google Scholar 

  4. Williams, J. C.; Starke, E. A. Progress in structural materials for aerospace systems. Acta Mater. 2003, 51, 5775–5799.

    Article  CAS  ADS  Google Scholar 

  5. He, S. M.; Chen, C. J.; Li, T.; Song, J. W.; Zhao, X. P.; Kuang, Y. D.; Liu, Y.; Pei, Y.; Hitz, E.; Kong, W. Q. et al. An energy-efficient, wood-derived structural material enabled by pore structure engineering towards building efficiency. Small Methods 2020, 4, 1900747.

    Article  CAS  Google Scholar 

  6. Wegst, U. G. K.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Mao, L. B.; Gao, H. L.; Yao, H. B.; Liu, L.; Cölfen, H.; Liu, G.; Chen, S. M.; Li, S. K.; Yan, Y. X.; Liu, Y. Y. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 2016, 354, 107–110.

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Sun, J. Y.; Bhushan, B. Hierarchical structure and mechanical properties of nacre: A review. RSC Adv. 2012, 2, 7617–7632.

    Article  CAS  ADS  Google Scholar 

  9. Liu, D. G.; Song, J. W.; Anderson, D. P.; Chang, P. R.; Hua, Y. Bamboo fiber and its reinforced composites: Structure and properties. Cellulose 2012, 19, 1449–1480.

    Article  CAS  Google Scholar 

  10. Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 2011, 10, 817–822.

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Harrington, M. J.; Masic, A.; Holten-Andersen, N.; Waite, J. H.; Fratzl, P. Iron- clad fibers: A metal-based biological strategy for hard flexible coatings. Science 2010, 328, 216–220.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Li, J. T.; Li, S. T.; Huang, J. Y.; Khan, A. Q.; An, B. G.; Zhou, X.; Liu, Z. F.; Zhu, M. F. Spider silk-inspired artificial fibers. Adv. Sci. (Weinh.) 2022, 9, 2103965.

    PubMed  Google Scholar 

  13. Matsuo, K.; Irie, N. Osteoclast-osteoblast communication. Arch. Biochem. Biophys. 2008, 473, 201–209.

    Article  CAS  PubMed  Google Scholar 

  14. Kim, M. Y.; Lee, K.; Shin, H. I.; Lee, K. J.; Jeong, D. Metabolic activities affect femur and lumbar vertebrae remodeling, and anti-resorptive risedronate disturbs femoral cortical bone remodeling. Exp. Mol. Med. 2021, 53, 103–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Graham, A. J.; Keitz, B. K. Living Synthetic Polymerizations. In Engineered Living Materials; Srubar, W. V., Ed.; Springer International: Cham, 2022, pp 27–49.

    Chapter  Google Scholar 

  16. Rodrigo-Navarro, A.; Sankaran, S.; Dalby, M. J.; Del Campo, A.; Salmeron-Sanchez M. Engineered living biomaterials. Nat. Rev. Mater. 2021, 6, 1175–1190.

    Article  ADS  Google Scholar 

  17. An, B. L.; Wang, Y. Y.; Huang, Y. Y.; Wang, X. Y.; Liu, Y. Z.; Xun, D. M.; Church, G. M.; Dai, Z. J.; Yi, X.; Tang, T. C. et al. Engineered living materials for sustainability. Chem. Rev. 2023, 123, 2349–2419.

    Article  CAS  PubMed  Google Scholar 

  18. Srubar, W. V. Engineered living materials: Taxonomies and emerging trends. Trends Biotechnol. 2021, 39, 574–583.

    Article  CAS  PubMed  Google Scholar 

  19. Meyers, M. A.; Chen, P. Y.; Lin, A. Y. M.; Seki, Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 2008, 53, 1–206.

    Article  CAS  Google Scholar 

  20. Eder, M.; Amini, S.; Fratzl, P. Biological composites-complex structures for functional diversity. Science 2018, 362, 543–547.

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Jia, Z. A.; Deng, Z. F.; Li, L. Biomineralized materials as model systems for structural composites: 3D architecture. Adv. Mater. 2022, 34, 2106259.

    Article  CAS  Google Scholar 

  22. Fratzl, P.; Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 2007, 52, 1263–1334.

    Article  CAS  Google Scholar 

  23. Reznikov, N.; Bilton, M.; Lari, L.; Stevens, M. M.; Kröger, R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science 2018, 360, eaao2189.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yang, T.; Chen, H. S.; Jia, Z. A.; Deng, Z. F.; Chen, L. N.; Peterman, E. M.; Weaver, J. C.; Li, L. A damage-tolerant, dual-scale, single-crystalline microlattice in the knobby starfish. Protoreaster nodosus. Science 2022, 375, 647–652.

    CAS  PubMed  Google Scholar 

  25. Vukusic, P.; Sambles, J. R. Photonic structures in biology. Nature 2003, 424, 852–855.

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Li, L.; Goodrich, C.; Yang, H. Z.; Phillips, K. R.; Jia, Z. A.; Chen, H. S.; Wang, L. F.; Zhong, J. J.; Liu, A. H.; Lu, J. F. et al. Microscopic origins of the crystallographically preferred growth in evaporation-induced colloidal crystals. Proc. Natl. Acad. Sci. USA 2021, 118, e2107588118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Parker, A. R.; Lawrence, C. R. Water capture by a desert beetle. Nature 2001, 414, 33–34.

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Kim, B. H.; Li, K.; Kim, J. T.; Park, Y.; Jang, H.; Wang, X. J.; Xie, Z. Q.; Won, S. M.; Yoon, H. J.; Lee, G. et al. Three-dimensional electronic microfliers inspired by wind-dispersed seeds. Nature 2021, 597, 503–510.

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Forterre, Y.; Skotheim, J. M.; Dumais, J.; Mahadevan, L. How the Venus flytrap snaps. Nature 2005, 433, 421–425.

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Pierantoni, M.; Brumfeld, V.; Addadi, L.; Weiner, S. A 3D study of the relationship between leaf vein structure and mechanical function. Acta Biomater. 2019, 88, 111–119.

    Article  PubMed  Google Scholar 

  31. Habibi, M. K.; Samaei, A. T.; Gheshlaghi, B.; Lu, J.; Lu, Y. Asymmetric flexural behavior from bamboo’s functionally graded hierarchical structure: Underlying mechanisms. Acta Biomater. 2015, 16, 178–186.

    Article  PubMed  Google Scholar 

  32. Norell, M. A.; Wiemann, J.; Fabbri, M.; Yu, C. Y.; Marsicano, C. A.; Moore-Nall, A.; Varricchio, D. J.; Pol, D.; Zelenitsky, D. K. The first dinosaur egg was soft. Nature 2020, 583, 406–410.

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Hou, X. C.; Zaks, T.; Langer, R.; Dong, Y. Z. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021, 6, 1078–1094.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Weaver, J. C.; Milliron, G. W.; Allen, P.; Miserez, A.; Rawal, A.; Garay, J.; Thurner, P. J.; Seto, J.; Mayzel, B.; Friesen, L. J. et al. Unifying design strategies in demosponge and hexactinellid skeletal systems. J. Adhes. 2010, 86, 72–95.

    Article  CAS  Google Scholar 

  35. Williams, N. Species highs. Curr. Biol. 2009, 19, R721–R722.

    Article  CAS  PubMed  Google Scholar 

  36. Florencio-Silva, R.; Da Silva Sasso, G. R.; Sasso-Cerri, E.; Simões, M. J.; Cerri, P. S. Biology of bone tissue: Structure, function, and factors that influence bone cells. BioMed Res. Int. 2015, 2015, 421746.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ghazlan, A.; Ngo, T.; Tan, P.; Xie, Y. M.; Tran, P.; Donough, M. Inspiration from Nature’s body armours-A review of biological and bioinspired composites. Compos. B Eng. 2021, 205, 108513.

    Article  CAS  Google Scholar 

  38. Studart, A. R. Additive manufacturing of biologically-inspired materials. Chem. Soc. Rev. 2016, 45, 359–376.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, C. Q.; Mcadams II, D. A.; Grunlan, J. C. Nano/micoo-manufacturing of bioinspired materials: A review of methods to mimic natural structures. Adv. Mater. 2016, 28, 6292–6321.

    Article  CAS  PubMed  Google Scholar 

  40. Chen, Y. L.; Ma, Y.; Yin, Q. F.; Pan, F.; Cui, C. J.; Zhang, Z. Q.; Liu, B. Advances in mechanics of hierarchical composite materials. Compos. Sci. Technol. 2021, 214, 108970.

    Article  Google Scholar 

  41. Zhao, Y. J.; Xie, Z. Y.; Gu, H. C.; Zhu, C.; Gu, Z. Z. Bio-inspired variable structural color materials. Chem. Soc. Rev. 2012, 41, 3297–3317.

    Article  CAS  PubMed  Google Scholar 

  42. Wang, S. T.; Liu, K. S.; Yao, X.; Jiang, L. Bioinspired surfaces with superwettability: New insight on theory, design, and applications. Chem. Rev. 2015, 115, 8230–8293.

    Article  CAS  PubMed  Google Scholar 

  43. Liu, Z. Q.; Meyers, M. A.; Zhang, Z. F.; Ritchie, R. O. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Prog. Mater. Sci. 2017, 88, 467–498.

    Article  CAS  Google Scholar 

  44. Schaedler, T. A.; Carter, W. B. Architected cellular materials. Annu. Rev. Mater. Res. 2016, 46, 187–210.

    Article  CAS  ADS  Google Scholar 

  45. Jia, Z. A.; Yu, Y.; Wang, L. F. Learning from nature: Use material architecture to break the performance tradeoffs. Mater. Des. 2019, 168, 107650.

    Article  Google Scholar 

  46. Pham, M. S.; Liu, C.; Todd, I.; Lertthanasarn, J. Damage-tolerant architected materials inspired by crystal microstructure. Nature 2019, 565, 305–311.

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Jia, Z. A.; Chen, H. S.; Deng, Z. F.; Li, L. Architected microlattices for structural and functional applications: Lessons from nature. Matter 2023, 6, 1082–1095.

    Article  CAS  Google Scholar 

  48. Jia, Z. A.; Liu, F.; Jiang, X. H.; Wang, L. F. Engineering lattice metamaterials for extreme property, programmability, and multifunctionality. J. Appl. Phys. 2020, 127, 150901.

    Article  CAS  ADS  Google Scholar 

  49. Munch, E.; Launey, M. E.; Alsem, D. H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Tough, bio-inspired hybrid materials. Science 2008, 322, 1516–1520.

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Cao, P. H. The strongest size in gradient nanograined Metals. Nano Lett. 2020, 20, 1440–1446.

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Wong, T. S.; Kang, S. H.; Tang, S. K. Y.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477, 443–447.

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Jia, Z. A.; Fernandes, M. C.; Deng, Z. F.; Yang, T.; Zhang, Q. T.; Lethbridge, A.; Yin, J.; Lee, J. H.; Han, L.; Weaver, J. C. et al. Microstructural design for mechanical-optical multifunctionality in the exoskeleton of the flower beetle Torynorrhina flammea. Proc. Natl. Acad. Sci. USA 2021, 118, e2101017118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ke, Y. J.; Chen, J. W.; Lin, G. J.; Wang, S. C.; Zhou, Y.; Yin, J.; Lee, P. S.; Long, Y. Smart windows: Electro-, thermo-, mechano-, photochromics, and beyond. Adv. Energy Mater. 2019, 9, 1902066.

    Article  CAS  Google Scholar 

  54. White, S. R.; Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–797.

    Article  CAS  PubMed  ADS  Google Scholar 

  55. Kang, D.; Pikhitsa, P. V.; Choi, Y. W.; Lee, C.; Shin, S. S.; Piao, L.; Park, B.; Suh, K. Y.; Kim, T. I.; Choi, M. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 2014, 516, 222–226.

    Article  CAS  PubMed  ADS  Google Scholar 

  56. Mimee, M.; Nadeau, P.; Hayward, A.; Carim, S.; Flanagan, S.; Jerger, L.; Collins, J.; Mcdonnell, S.; Swartwout, R.; Citorik, R. J. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 2018, 360, 915–9185.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  57. Nguyen, P. Q.; Botyanszki, Z.; Tay, P. K. R.; Joshi, N. S. Programmable biofilm-based materials from engineered curli nanofibres. Nat. Commun. 2014, 5, 4945.

    Article  CAS  PubMed  ADS  Google Scholar 

  58. Huang, J. F.; Liu, S. Y.; Zhang, C.; Wang, X. Y.; Pu, J. H.; Ba, F.; Xue, S.; Ye, H. F.; Zhao, T. X.; Li, K. et al. Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nat. Chem. Biol. 2019, 15, 34–41.

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Gao, M. H.; Li, J.; Bao, Z. X.; Hu, M. D.; Nian, R.; Feng, D. X.; An, D.; Li, X.; Xian, M.; Zhang, H. B. A natural in situ fabrication method of functional bacterial cellulose using a microorganism. Nat. Commun. 2019, 10, 437.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  60. Charrier, M.; Li, D.; Mann, V. R.; Yun, L. S.; Jani, S.; Rad, B.; Cohen, B. E.; Ashby, P. D.; Ryan, K. R.; Ajo-Franklin, C. M. Engineering the S-layer of Caulobacter crescentus as a foundation for stable, high-density, 2D living materials. ACS Synth. Biol. 2019, 8, 181–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jo, H.; Sim, S. Programmable living materials constructed with the dynamic covalent interface between synthetic polymers and engineered B. subtilis. ACS Appl. Mater. Interfaces 2022, 14, 20729–20738.

    Article  CAS  PubMed  Google Scholar 

  62. Saha, A.; Johnston, T. G.; Shafranek, R. T.; Goodman, C. J.; Zalatan, J. G.; Storti, D. W.; Ganter, M. A.; Nelson, A. Additive manufacturing of catalytically active living materials. ACS Appl. Mater. Interfaces 2018, 10, 13373–13380.

    Article  CAS  PubMed  Google Scholar 

  63. Rivera-Tarazona, L. K.; Shukla, T.; Singh, K. A.; Gaharwar, A. K.; Campbell, Z. T.; Ware, T. H. 4D printing of engineered living materials. Adv. Funct. Mater. 2022, 32, 2106843.

    Article  CAS  Google Scholar 

  64. Zhang, P. C.; Shao, N.; Qin, L. D. Recent advances in microfluidic platforms for programming cell-based living materials. Adv. Mater. 2021, 33, 2005944.

    Article  CAS  Google Scholar 

  65. Discher, D.; Dong, C.; Fredberg, J. J.; Guilak, F.; Ingber, D.; Janmey, P.; Kamm, R. D.; Schmid-Schönbein, G. W.; Weinbaum, S. Biomechanics: Cell research and applications for the next decade. Ann. Biomed. Eng. 2009, 37, 847–859.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Liu, S.; Xu, W. N. Engineered living materials-based sensing and actuation. Frontiers in Sensors 2020, 1, 586300.

    Article  Google Scholar 

  67. Chen, C. J.; Kuang, Y. D.; Zhu, S. Z.; Burgert, I.; Keplinger, T.; Gong, A.; Li, T.; Berglund, L.; Eichhorn, S. J.; Hu, L. B. Structure-property-function relationships of natural and engineered wood. Nat. Rev. Mater. 2020, 5, 642–666.

    Article  CAS  ADS  Google Scholar 

  68. Geng, Y.; Jiao, K.; Liu, X.; Ying, P. J.; Odunmbaku, O.; Zhang, Y. X.; Tan, S. C.; Li, L.; Zhang, W.; Li, M. Applications of bio-derived/bio-inspired materials in the field of interfacial solar steam generation. Nano Res. 2022, 15, 3122–3142.

    Article  CAS  ADS  Google Scholar 

  69. Nurazzi, N. M.; Asyraf, M. R. M.; Athiyah, S. F.; Shazleen, S. S.; Rafiqah, S. A.; Harussani, M. M.; Kamarudin, S. H.; Razman, M. R.; Rahmah, M.; Zainudin, E. S. et al. A review on mechanical performance of hybrid natural fiber polymer composites for structural applications. Polymers (Basel) 2021, 13, 2170.

    Article  CAS  PubMed  Google Scholar 

  70. Song, J. W.; Chen, C. J.; Zhu, S. Z.; Zhu, M. W.; Dai, J. Q.; Ray, U.; Li, Y. J.; Kuang, Y. D.; Li, Y. F.; Quispe, N. et al. Processing bulk natural wood into a high-performance structural material. Nature 2018, 554, 224–228.

    Article  CAS  PubMed  ADS  Google Scholar 

  71. Li, S. W.; Li, J.; Geng, Y.; Liao, Y. N.; Chen, S. S.; Sun, K.; Li, M. Shape-stable phase change composites based on carbonized waste pomelo peel for low-grade thermal energy storage. J. Energy Storage 2022, 47, 103556.

    Article  Google Scholar 

  72. Geng, Y.; Sun, W.; Ying, P. J.; Zheng, Y. J.; Ding, J.; Sun, K.; Li, L.; Li, M. Bioinspired fractal design of waste biomass-derived solar-thermal materials for highly efficient solar evaporation. Adv. Funct. Mater. 2021, 31, 2007648.

    Article  CAS  Google Scholar 

  73. Camere, S.; Karana, E. Fabricating materials from living organisms: An emerging design practice. J. Clean. Prod. 2018, 186, 570–584.

    Article  Google Scholar 

  74. Oren, A.; Garrity, G. M. Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 2021, 71, 005056.

    Article  Google Scholar 

  75. Schulz, H. N.; Jørgensen, B. B. Big Bacteria. Annu. Rev. Microbiol. 2001, 55, 105–137.

    Article  CAS  PubMed  Google Scholar 

  76. Van Mullem, T.; Gruyaert, E.; Caspeele, R.; De Belie, N. De Belie First large scale application with self-healing concrete in Belgium: Analysis of the laboratory control tests. Materials (Basel) 2020, 13, 997.

    Article  CAS  PubMed  ADS  Google Scholar 

  77. Qian, C. X.; Yu, X. N.; Zheng, T. W.; Chen, Y. Q. Review on bacteria fixing CO2 and bio-mineralization to enhance the performance of construction materials. J. CO2Utilizat. 2022, 55, 101849.

    Article  CAS  Google Scholar 

  78. Qiu, J. S.; Artier, J.; Cook, S.; Srubar III, W. V.; Cameron, J. C.; Hubler, M. H. Engineering living building materials for enhanced bacterial viability and mechanical properties. iScience 2021, 24, 102083.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  79. Duraj-Thatte, A. M.; Manjula-Basavanna, A.; Courchesne, N. M. D.; Cannici, G. I.; Sánchez-Ferrer, A.; Frank, B. P.; Van’t Hag, L.; Cotts, S. K.; Fairbrother, D. H.; Mezzenga, R. et al. Water-processable, biodegradable and coatable aquaplastic from engineered biofilms. Nat. Chem. Biol. 2021, 17, 732–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Manjula-Basavanna, A.; Duraj-Thatte, A. M.; Joshi, N. S. Robust self-regeneratable stiff living materials fabricated from microbial cells. Adv. Funct. Mater. 2021, 31, 2010784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Portela, R.; Leal, C. R.; Almeida, P. L.; Sobral, R. G. Bacterial cellulose: A versatile biopolymer for wound dressing applications. Microb. Biotechnol. 2019, 12, 586–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Suryanto, H.; Muhajir, M.; Sutrisno, T. A.; Mudjiono; Zakia, N.; Yanuhar, U. The mechanical strength and morphology of bacterial cellulose films: The effect of NaOH concentration. IOP Conf. Ser. Mater. Sci. Eng. 2019, 515, 012053.

    Article  CAS  Google Scholar 

  83. Chawla, P. R.; Bajaj, I. B.; Survase, S. A.; Singhal, R. S. Microbial cellulose: Fermentative production and applications. Food Technol. Biotechnol. 2009, 47, 107–124.

    CAS  Google Scholar 

  84. Huang, Y.; Zhu, C. L.; Yang, J. Z.; Nie, Y.; Chen, C. T.; Sun, D. P. Recent advances in bacterial cellulose. Cellulose 2014, 21, 1–30.

    Article  Google Scholar 

  85. Schaffner, M.; Rühs, P. A.; Coulter, F.; Kilcher, S.; Studart, A. R. 3D printing of bacteria into functional complex materials. Sci. Adv. 2017, 3, eaao6804.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Caro-Astorga, J.; Walker, K. T.; Herrera, N.; Lee, K. Y.; Ellis, T. Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration. Nat. Commun. 2021, 12, 5027.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  87. Binelli, M. R.; Rühs, P. A.; Pisaturo, G.; Leu, S.; Trachsel, E.; Studart, A. R. Living materials made by 3D printing cellulose-producing bacteria in granular gels. Biomater. Adv. 2022, 141, 213095.

    Article  CAS  PubMed  Google Scholar 

  88. Ednie-Brown, P. bioMASON and the speculative engagements of biotechnical architecture. Architect. Des. 2013, 83, 84–91.

    Google Scholar 

  89. Heveran, C. M.; Williams, S. L.; Qiu, J. S.; Artier, J.; Hubler, M. H.; Cook, S. M.; Cameron, J. C.; Srubar, W. V. Biomineralization and successive regeneration of engineered living building materials. Matter 2020, 2, 481–494.

    Article  CAS  Google Scholar 

  90. Hawksworth, D. L. The magnitude of fungal diversity: The 1.5 million species estimate revisited. Mycol. Res. 0011, 105, 1422–1432.

    Article  Google Scholar 

  91. Gow, N. A. R.; Latge, J. P.; Munro, C. A. The fungal cell wall: Structure, biosynthesis, and function. Microbiol. Spectr. 2017, 5, FUNK-0035-2016.

    Article  Google Scholar 

  92. Appels, F. V. W.; Camere, S.; Montalti, M.; Karana, E.; Jansen, K. M. B.; Dijksterhuis, J.; Krijgsheld, P.; Wösten, H. A. B. Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Mater Des 2019, 161, 64–71.

    Article  CAS  Google Scholar 

  93. Nawawi, W. M. F. W.; Jones, M. P.; Kontturi, E.; Mautner, A.; Bismarck, A. Plastic to elastic: Fungi-derived composite nanopapers with tunable tensile properties. Compos. Sci. Technol. 2020, 198, 108327.

    Article  CAS  Google Scholar 

  94. Liu, R.; Long, L.; Sheng, Y.; Xu, J. F.; Qiu, H. Y.; Li, X. Y.; Wang, Y. X.; Wu, H. G. Preparation of a kind of novel sustainable mycelium/cotton stalk composites and effects of pressing temperature on the properties. Ind. Crops Prod. 2019, 141, 1117322.

    Article  Google Scholar 

  95. Sun, W. J.; Tajvidi, M.; Hunt, C. G.; McIntyre, G.; Gardner, D. J. Fully bio-based hybrid composites made of wood, fungal mycelium and cellulose nanofibrils. Sci. Rep. 2019, 9, 3766.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  96. Jones, M. P.; Lawrie, A. C.; Huynh, T. T.; Morrison, P. D.; Mautner, A.; Bismarck, A.; John, S. Agricultural by-product suitability for the production of chitinous composites and nanofibers utilising Trametes versicolor and Polyporus brumalis mycelial growth. Process Biochem. 2019, 80, 95–102.

    Article  CAS  Google Scholar 

  97. Lee, T.; Choi, J. Mycelium- composite panels for atmospheric particulate matter adsorption. Results Mater. 2021, 11, 100208.

    Article  CAS  Google Scholar 

  98. Pelletier, M. G.; Holt, G. A.; Wanjura, J. D.; Bayer, E.; McIntyre, G. An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Ind. Crops Prod. 2013, 51, 480–485.

    Article  CAS  Google Scholar 

  99. Dias, P. P.; Jayasinghe, L. B.; Waldmann, D. Investigation of Mycelium-Miscanthus composites as building insulation material. Results in Materials 2021, 10, 100189.

    Article  Google Scholar 

  100. Schritt, H.; Vidi, S.; Pleissner, D. Spent mushroom substrate and sawdust to produce mycelium-based thermal insulation composites. J. Clean. Prod. 2021, 313, 127910.

    Article  Google Scholar 

  101. McBee, R. M.; Lucht, M.; Mukhitov, N.; Richardson, M.; Srinivasan, T.; Meng, D. C.; Chen, H. R.; Kaufman, A.; Reitman, M.; Munck, C. et al. Engineering living and regenerative fungal-bacterial biocomposite structures. Nat. Mater. 2022, 21, 471–478.

    Article  CAS  PubMed  ADS  Google Scholar 

  102. Jones, M.; Gandia, A.; John, S.; Bismarck, A. Leather-like material biofabrication using fungi. Nat Sustain 2021, 4, 9–16.

    Article  Google Scholar 

  103. Elsacker, E.; Zhang, M.; Dade-Robertson, M. Fungal engineered living materials: The viability of pure mycelium materials with self-healing functionalities. Adv. Funct. Mater. 2023, 33, 2301875.

    Article  CAS  Google Scholar 

  104. Van Wylick, A.; Monclaro, A. V.; Elsacker, E.; Vandelook, S.; Rahier, H.; De Laet, L.; Cannella, D.; Peeters, E. A review on the potential of filamentous fungi for microbial self-healing of concrete. Fungal Biol. Biotechnol. 2021, 8, 16.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Shakya, M.; Sharma, P.; Meryem, S. S.; Mahmood, Q.; Kumar, A. Heavy metal removal from industrial wastewater using fungi: Uptake mechanism and biochemical aspects. J. Environ. Eng. 2016, 142, C6015001.

    Article  Google Scholar 

  106. Gantenbein, S.; Colucci, E.; Käch, J.; Trachsel, E.; Coulter, F. B.; Rühs, P. A.; Masania, K.; Studart, A. R. Three-dimensional printing of mycelium hydrogels into living complex materials. Nat. Mater. 2023, 22, 128–134.

    Article  CAS  PubMed  ADS  Google Scholar 

  107. Shen, S. C.; Lee, N. A.; Lockett, W. J.; Acuil, A. D.; Gazdus, H. B.; Spitzer, B. N.; Buehler, M. J. Robust myco-composites as a platform for versatile hybrid-living structural materials. arXiv: 2305, 12151, 2023.

    ADS  Google Scholar 

  108. Jones, M.; Mautner, A.; Luenco, S.; Bismarck, A.; John, S. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater. Des. 2020, 187, 108397.

    Article  CAS  Google Scholar 

  109. Sağlam, S. S.; Özgünler, S. A. An experimental study on production opportunities of biocomposite by using fungal mycelium. J. Des. Resil. Architect. Plann. 2022, 3, 237–260.

    Google Scholar 

  110. Haneef, M.; Ceseracciu, L.; Canale, C.; Bayer, I. S.; Heredia-Guerrero, J. A.; Athanassiou, A. Advanced materials from fungal mycelium: Fabrication and tuning of physical properties. Sci. Rep. 2017, 7, 41292.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  111. Chang, J. H.; Chan, P. L.; Xie, Y. C.; Ma, K. L.; Cheung, M. K.; Kwan, H. S. Modified recipe to inhibit fruiting body formation for living fungal biomaterial manufacture. PLoS One, 2019, 14, e0209812.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Vallas, T.; Courard, L. Using nature in architecture: Building a living house with mycelium and trees. Front. Architect. Res. 2017, 6, 318–328.

    Article  Google Scholar 

  113. Ghavami, K. 2-Introduction to nonconventional materials and an historic retrospective of the field. In Nonconventional and Vernacular Construction Materials, Harries, K. A.; Sharma, B.; Eds.; Woodhead Publishing: Duxfor, 2016; pp 37–61.

    Chapter  Google Scholar 

  114. Ludwig, F.; Schwertfreger, H.; Storz, O. Living systems: Designing growth in baubotanik. Architect. Des. 2012, 82, 82–87.

    Google Scholar 

  115. Middleton, W.; Shu, Q. G.; Ludwig, F. Representing living architecture through skeleton reconstruction from point clouds. Sci. Rep. 2022, 12, 1549.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  116. Roumeli, E.; Bonanomi, L.; Hendrickx, R.; Rinaldi, K.; Daraio, C. Plant cells-based biological matrix composites. arrivv 1909, 01926, 2019.

    Google Scholar 

  117. Schmidt, D.; Asmis, L. M.; Odermatt, B.; Kelm, J.; Breymann, C.; Gössi, M.; Genoni, M.; Zund, G.; Hoerstrup, S. P. Engineered living blood vessels: Functional endothelia generated from human umbilical cord-derived progenitors. Ann. Thorac. Surg. 2006, 82, 1465–1471.

    Article  PubMed  Google Scholar 

  118. Murphy, S. V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785.

    Article  CAS  PubMed  Google Scholar 

  119. Discher, D. E.; Janmey, P.; Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 2005, 310, 1139–1143.

    Article  CAS  PubMed  ADS  Google Scholar 

  120. Kang, S.; Park, J. B.; Lee, T. J.; Ryu, S.; Bhang, S. H.; La, W. G.; Noh, M. K.; Hong, B. H.; Kim, B. S. Covalent conjugation of mechanically stiff graphene oxide flakes to three-dimensional collagen scaffolds for osteogenic differentiation of human mesenchymal stem cells. Carbon 2015, 83, 162–172.

    Article  CAS  Google Scholar 

  121. Jiang, Y. R.; Zhou, D. Z.; Yang, B. 3D bioprinted GelMA/GO composite induces osteoblastic differentiation. J. Biomater. Appl. 2022, 37, 527–537.

    Article  PubMed  Google Scholar 

  122. Tsoi, R.; Wu, F. L.; Zhang, C.; Bewick, S.; Karig, D.; You, L. C. Metabolic division of labor in microbial systems. Proc. Natl. Acad. Sci. USA 2018, 115, 2526–2531.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  123. Gilbert, C.; Tang, T. C.; Ott, W.; Dorr, B. A.; Shaw, W. M.; Sun, G. L.; Lu, T. K.; Ellis, T. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat. Mater. 2021, 20, 691–700.

    Article  CAS  PubMed  ADS  Google Scholar 

  124. Raman, J.; Kim, D. S.; Kim, H. S.; Oh, D. S.; Shin, H. J. Mycofabrication of mycelium-based leather from brown-rot fungi. J. Fungi 2022, 8, 317.

    Article  CAS  Google Scholar 

  125. Estroff, L. A. Introduction: Biomineralization. Chem. Rev. 2008, 108, 4329–4331.

    Article  CAS  PubMed  Google Scholar 

  126. Xin, A.; Su, Y. P.; Feng, S. W.; Yan, M. L.; Yu, K. H.; Feng, Z. Z. R.; Lee, K.H.; Sun, L. Z.; Wang, Q. M. Growing living composites with ordered microstructures and exceptional mechanical properties. Adv. Mater. 2021, 33, 2006946.

    Article  CAS  Google Scholar 

  127. Wiktor, V.; Jonkers, H. M. Bacteria- based concrete: From concept to market. Smart Mater. Struct. 2016, 25, 084006.

    Article  ADS  Google Scholar 

  128. Wang, Y. Y.; An, B. L.; Xue, B.; Pu, J. H.; Zhang, X. L.; Huang, Y. Y.; Yu, Y.; Cao, Y.; Zhong, C. Living materials fabricated via gradient mineralization of light-inducible biofilms. Nat. Chem. Biol. 2021, 17, 351–359.

    Article  CAS  PubMed  Google Scholar 

  129. Wallace, A. K.; Chanut, N.; Voigt, C. A. Silica nanostructures modifications. Adv. Funct. Mater. 2020, 30, 2000849.

    Article  CAS  Google Scholar 

  130. Konak, B. M. K.; Bakar, M. E.; Ahan, R. E.; Özyürek, E. U.; Dökmeci, S.; Şeker, U. Ö. Ş. A living material platform for the biomineralization of biosilica. Mater. Today Bio 2022, 17, 100461.

    Article  Google Scholar 

  131. Park, H.; Schwartzman, A. F.; Tang, T. C.; Wang, L.; Lu, T. K. Ultra-lightweight living structural material for enhanced stiffness and environmental sensing. Mater. Today Bio 2023, 18, 100504.

    Article  CAS  PubMed  Google Scholar 

  132. Araújo, G. R. D. S.; Viana, N. B.; Gómez, F.; Pontes, B.; Frases, S. The mechanical properties of microbial surfaces and biofilms. Cell Surf. 2019, 5, 100028.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Charlton, S. G. V.; White, M. A.; Jana, S.; Eland, L. E.; Jayathilake, P. G.; Burgess, J. G.; Chen, J. J.; Wipat, A.; Curtis, T. P. Regulating, measuring, and modeling the viscoelasticity of bacterial biofilms. J. Bacteriol. 2019, 201, e00101–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wilking, J. N.; Angelini, T. E.; Seminara, A.; Brenner, M. P.; Weitz, D. A. Biofilms as complex fluids. MRS Bull. 2011, 36, 385–391.

    Article  CAS  ADS  Google Scholar 

  135. Wan Nawawi, W. M. F.; Lee, K. Y.; Kontturi, E.; Murphy, R. J.; Bismarck, A. Chitin nanopaper from mushroom extract: Natural composite of nanofibers and glucan from a single biobased source. ACS Sustainable Chem. Eng. 2019, 7, 6492–6496.

    Article  Google Scholar 

  136. Menon, R. R.; Luo, J.; Chen, X. B.; Zhou, H.; Liu, Z. Y.; Zhou, G. W.; Zhang, N.; Jin, C. R. Screening of fungi for potential application of self-healing concrete. Sci. Rep. 2019, 9, 2075.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  137. Zhang, J. H.; Shi, X. Z.; Chen, X.; Huo, X. F.; Yu, Z. Microbial-induced carbonate precipitation: A review on influencing factors and applications. Adv. Civil Eng. 2021, 2021, 9974027.

    Article  Google Scholar 

  138. Sandak, A.; Sandak, J.; Brzezicki, M.; Kutnar, A. Biomaterials for Building Skins. In: Bio-based Building Skin. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. 2019.

    Google Scholar 

  139. Hy-Fi. urbanNext [Online]. https://urbannext.net/hy-fi/ (Accessed Jun 17, 2023).

  140. Diana Scherer Interwoven [Online]. https://dianascherer.nl/ (Accessed Jun 21, 2023).

  141. Jones, M.; Bhat, T.; Wang, C. H.; Moinuddin, K; John, S. Thermal degradation and fire reaction properties of mycelium composites. In Proceedings of the 21stinternational conference on composite materials, Xi’an, China, 2017, pp. 20–25.

Download references

Acknowledgements

Ling Li gratefully acknowledges the funding support from the National Science Foundation (No. DMR-1942865), the Air Force Office of Scientific Research (Nos. FA9550-19-1-0033 and FA9550-20-1-0161), and Virginia Polytechnic Institute and State University for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Y., Jia, Z. & Li, L. Structural engineered living materials. Nano Res. 17, 715–733 (2024). https://doi.org/10.1007/s12274-023-6313-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6313-7

Keywords

Navigation