Skip to main content
Log in

Mn single-atoms decorated CNT electrodes for high-performance supercapacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing highly robust and efficient electrode materials is of critical importance to promoting the energy density of current supercapacitors for commercialization. Herein, we report an efficient catalyst with monodispersed Mn single-atoms embedded in carbon nanotubes (Mn-CNTs) for enhancing the electrode performance of supercapacitors. A high specific capacitance (1523.6 F·g−1 at 1.0 A·g−1) can be achieved, which is about twice as high as the specific capacitance of the electrode material without the introduction of Mn single-atoms. Remarkably, the asymmetric electrochemical capacitor created with Mn-CNT and activated carbon exhibits a high energy density of 180.8 Wh·kg−1 at a power density of 1.4 kW·kg−1, much higher than most reported results. The study shows that the integration of Mn atoms into the CNT can enhance the charge transport capacity and the number of polar active sites of Mn-CNT and then facilitate chemical interactions between Mn-CNT and OH. This work provides a novel strategy to enable high-energy storage in supercapacitors by introducing single-atoms into carbon nanotubes to improve electrodes’ energy density and cycle life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lukatskaya, M. R.; Dunn, B.; Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 2016, 7, 12647.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gielen, D.; Boshell, F.; Saygin, D. Climate and energy challenges for materials science. Nat. Mater. 2016, 15, 117–120.

    Article  CAS  PubMed  Google Scholar 

  3. Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, C.; Lv, W.; Tao, Y.; Yang, Q. H. Towards superior volumetric performance: Design and preparation of novel carbon materials for energy storage. Energy Environ. Sci., 2015, 8, 1390–1403.

    Article  CAS  Google Scholar 

  5. Zhao, G. Y.; Chen, C.; Yu, D. F.; Sun, L.; Yang, C. H.; Zhang, H.; Sun, Y.; Besenbacher, F.; Yu, M. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 2018, 47, 547–555.

    Article  CAS  Google Scholar 

  6. Hou, J. H.; Cao, C. B.; Idrees, F.; Ma, X. L. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 2015, 9, 2556–2564.

    Article  CAS  PubMed  Google Scholar 

  7. Kumar, K. S.; Choudhary, N.; Jung, Y.; Thomas, J. Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications. ACS Energy Lett. 2018, 3, 482–495.

    Article  CAS  Google Scholar 

  8. Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2321–2325.

    Article  CAS  Google Scholar 

  9. Han, L. L.; Song, S. J.; Liu, M. J.; Yao, S. Y.; Liang, Z. X.; Cheng, H.; Ren, Z. H.; Liu, W.; Lin, R. Q.; Qi, G. C. et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563–12567.

    Article  CAS  PubMed  Google Scholar 

  10. Cui, C. X.; Gao, Y.; Li, J.; Yang, C.; Liu, M.; Jin, H. L.; Xia, Z. H.; Dai, L. M.; Lei, Y.; Wang, J. C. et al. Origins of boosted charge storage on heteroatom-doped carbons. Angew. Chem. 2020, 132, 8002–8007.

    Article  Google Scholar 

  11. Liu, P.; Cai, W. Q.; Chen, J. W.; Yang, Z. C.; Zhou, J. P.; Cai, Z. J.; Fan, J. J. One- pot hydrothermal preparation of manganese-doped carbon microspheres for effective deep removal of hexavalent chromium from wastewater. J. Colloid Interface Sci. 2021, 599, 427–435.

    Article  CAS  PubMed  Google Scholar 

  12. Kang, S.; Han, H. S.; Mhin, S.; Chae, H. R.; Kim, W. R.; Kim, K. M. Ni-doped carbon nanotubes fabricated by pulsed laser ablation in liquid as efficient electrocatalysts for oxygen evolution reaction. Appl. Surf. Sci. 2021, 547, 149197.

    Article  CAS  Google Scholar 

  13. Chen, X.; Chen, D.; Li, G. F.; Gong, C.; Chen, Y. J.; Zhang, Q.; Sui, J.; Dong, H. Z.; Yu, J. H.; Yu, L. Y. et al. A hierarchical architecture of Fe/Co/Ni-doped carbon nanotubes/nanospheres grafted on graphene as advanced bifunctional electrocatalyst for Zn-Air batteries. J. Alloys Compd. 2021, 873, 159833.

    Article  CAS  Google Scholar 

  14. Wang, T.; Chen, H. C.; Yu, F.; Zhao, X. S.; Wang, H. X. Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 2019, 16, 545–573.

    Article  Google Scholar 

  15. Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y. E.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 2020, 12, 764–772.

    Article  PubMed  Google Scholar 

  16. Zhang, M. T.; Li, H.; Chen, J. X.; Ma, F. X.; Zhen, L.; Wen, Z. H.; Xu, C. Y. Transition metal (Co, Ni, Fe, Cu) single-atom catalysts anchored on 3D nitrogen-doped porous carbon nanosheets as efficient oxygen reduction electrocatalysts for Zn-air battery. Small 2022, 34, 2202476.

    Article  Google Scholar 

  17. Qiao, S. M.; Lei, D.; Wang, Q.; Shi, X. S.; Zhang, Q.; Huang, C. H.; Liu, A. M.; He, G. H.; Zhang, F. X. Etch-evaporation enabled defect engineering to prepare high-loading Mn single atom catalyst for Li-S battery applications. Chem. Eng. J. 2022, 442, 136258.

    Article  CAS  Google Scholar 

  18. Jin, Y.; Zou, L. F.; Liu, L. L.; Engelhard, M. H.; Patel, R. L.; Nie, Z. M.; Han, K. S.; Shao, Y. Y.; Wang, C. M.; Zhu, J. et al. Joint charge storage for high-rate aqueous zinc-manganese dioxide batteries. Adv. Mater. 2019, 31, 1900567.

    Article  Google Scholar 

  19. Zhao, B. T.; Zhang, L.; Zhang, Q. B.; Chen, D. C.; Cheng, Y.; Deng, X.; Chen, Y.; Murphy, R.; Xiong, X. H.; Song, B. et al. Rational design of nickel hydroxide-based nanocrystals on graphene for ultrafast energy storage. Adv. Energy Mat. 2018, 8, 1702247.

    Article  Google Scholar 

  20. Cheng, X. B.; Tian, G. L.; Liu, X. F.; Nie, J. Q.; Zhao, M. Q.; Huang, J. Q.; Zhu, W. C.; Hu, L.; Zhang, Q.; Wei, F. Robust growth of herringbone carbon nanofibers on layered double hydroxide derived catalysts and their applications as anodes for Li-ion batteries. Carbon 2013, 62, 393–404.

    Article  CAS  Google Scholar 

  21. Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride materials: Controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 2012, 5, 6717–6731.

    Article  CAS  Google Scholar 

  22. Jia, H. N.; Lin, J. H.; Liu, Y. L.; Chen, S. L.; Cai, Y. F.; Qi, J. L.; Feng, J. C.; Fei, W. D. Nanosized core-shell structured graphene-MnO2 nanosheet arrays as stable electrodes for superior supercapacitors. J. Mater. Chem. A 2017, 5, 10678–10686.

    Article  CAS  Google Scholar 

  23. Yang, Z. K.; Wang, X. L.; Zhu, M. Z.; Leng, X. Y.; Chen, W. X.; Wang, W. Y.; Xu, Q.; Yang, L. M.; Wu, Y. E. Structural revolution of atomically dispersed Mn sites dictates oxygen reduction performance. Nano Res. 2021, 14, 4512–4519.

    Article  CAS  Google Scholar 

  24. Zhou, H.; Zhao, Y. F.; Gan, J.; Xu, J.; Wang, Y.; Lv, H. W.; Fang, S.; Wang, Z. Y.; Deng, Z. L.; Wang, X. Q. et al. Cation-exchange induced precise regulation of single copper site triggers room-temperature oxidation of benzene. J. Am. Chem. Soc. 2020, 142, 12643–12650.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, Y.; Deng, S. J.; Luo, M.; Pan, G. X.; Zeng, Y. X.; Lu, X. H.; Ai, C. Z.; Liu, Q.; Xiong, Q. Q.; Wang, X. L. et al. Defect promoted capacity and durability of N-MnO2−x branch arrays via low-temperature NH3 treatment for advanced aqueous zinc ion batteries. Small 2019, 15, 1905452.

    Article  CAS  Google Scholar 

  26. Gao, W. J.; Wan, Y.; Dou, Y. Q.; Zhao, D. Y. Synthesis of partially graphitic ordered mesoporous carbons with high surface areas. Adv. Energy Mater. 2011, 1, 115–123.

    Article  CAS  Google Scholar 

  27. Kumar, S.; Riyajuddin, S.; Afshan, M.; Aziz, S. T.; Maruyama, T.; Ghosh, K. In–situ growth of urchin manganese sulfide anchored three-dimensional graphene (γ-MnS@3DG) on carbon cloth as a flexible asymmetric supercapacitor. J. Phys. Chem. Lett. 2021, 12, 6574–6581.

    Article  CAS  PubMed  Google Scholar 

  28. Messaoudi, B.; Joiret, S.; Keddam, M.; Takenouti, H. Anodic behaviour of manganese in alkaline medium. Electrochim. Acta 2001, 46, 2487–2498.

    Article  CAS  Google Scholar 

  29. Zhou, D.; Wang, Z.; Long, X.; An, Y. M.; Lin, H.; Xing, Z.; Ma, M.; Yang, S. H. One- pot synthesis of manganese oxides and cobalt phosphides nanohybrids with abundant heterointerfaces in an amorphous matrix for efficient hydrogen evolution in alkaline solution. J. Mater. Chem. A 2019, 7, 22530–22538.

    Article  CAS  Google Scholar 

  30. Lee, S. W.; Kim, J.; Chen, S.; Hammond, P. T.; Shao-Horn, Y. Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 2010, 4, 3889–3896.

    Article  CAS  PubMed  Google Scholar 

  31. Cai, Z. Y.; Zhang, F.; Wei, D. Y.; Zhai, B.; Wang, X. Y.; Song, Y. NixCo1−xS2@N-doped carbon composites for supercapacitor electrodes. J. Energy Storage 2023, 72, 108231.

    Article  Google Scholar 

  32. Chen, B. L.; Wu, D. L.; Wang, T.; Yuan, F.; Jia, D. Z. Rapid preparation of porous carbon by flame burning carbonization method for supercapacitor. Chem. Eng. J. 2023, 462, 142163.

    Article  CAS  Google Scholar 

  33. Zhang, A. Q.; Zhao, R.; Hu, L. Y.; Yang, R.; Yao, S. Y.; Wang, S. Y.; Yang, Z. Y.; Yan, Y. M. Adjusting the coordination environment of Mn enhances supercapacitor performance of MnO2. Adv. Energy Mater. 2021, 11, 2101412.

    Article  CAS  Google Scholar 

  34. Koudahi, M. F.; Frąckowiak, E. Fast response supercapacitor based on carbon-VS2 electrodes with a wide operating voltage range. Energy Storage Mater. 2022, 49, 255–267.

    Article  Google Scholar 

  35. Li, H. Z.; Du, T. Y.; Wang, Q.; Guo, J. Y.; Zhang, S. Y.; Lu, Y. A new synthesis of O/N-doped porous carbon material for supercapacitors. J. Energy Storage 2023, 66, 107397.

    Article  Google Scholar 

  36. Arjunan, A.; Ramasamy, S.; Kim, J.; Kim, S. K. Co3O4 nanoparticles-embedded nitrogen-doped porous carbon spheres for high-energy hybrid supercapacitor electrodes. J. Energy Storage 2023, 68, 107758.

    Article  Google Scholar 

  37. Qiu, Z. P.; Liu, Z.; Wang, G. W.; Huangfu, C.; Li, Z. Y.; Yan, Y. C.; Chi, C. L.; Gao, P. F.; Lu, X. L.; Zhang, S. et al. Highly redox-active oligomers between graphene sheets as ultrahigh capacitance/rate and stable electrodes for supercapacitors. Energy Storage Mater. 2023, 60, 102824.

    Article  Google Scholar 

  38. Zhang, J. C.; Luo, J. W.; Guo, Z. X.; Liu, Z. D.; Duan, C. P.; Dou, S. M.; Yuan, Q. Y.; Liu, P.; Ji, K. M.; Zeng, C. H. et al. Ultrafast manufacturing of ultrafine structure to achieve an energy density of over 120 Wh·kg−1 in supercapacitors. Adv. Energy Mater. 2023, 13, 2203061.

    Article  CAS  Google Scholar 

  39. Anwer, A. H.; Shoeb, M.; Mashkoor, F.; Ali, A.; Kareem, S.; Ansari, M. Z.; Park, J. M.; Jeong, C. Simultaneous reduction of carbon dioxide and energy harvesting using RGO-based SiO2-TiO2 nanocomposite for supercapacitor and microbial electrosynthesis. Appl. Catal. B: Environ. 2023, 339, 123091.

    Article  CAS  Google Scholar 

  40. Vadiyar, M. M.; Kim, J. Y.; Bae, J. H.; Nam, K. W. Imidazole linker-induced covalent triazine framework-ZIF hybrids for confined hollow carbon super-heterostructures toward a long-life supercapacitor. Carbon Energy, in press, DOI: https://doi.org/10.1002/cey2.344.

  41. Fu, M.; Chen, W.; Lei, Y.; Yu, H.; Lin, Y. X.; Terrones, M. Biomimetic construction of ferrite quantum dot/graphene heterostructure for enhancing ion/charge transfer in supercapacitors. Adv. Mater. 2023, 35, 2300940.

    Article  CAS  Google Scholar 

  42. Huang, J.; Liu, C.; Jin, Y. Z.; Chen, J. C. Hierarchical porous carbon synthesis by carbonized polymer dots-based sacrificial template for high-performance supercapacitors. Chem. Eng. J. 2023, 461, 141930.

    Article  CAS  Google Scholar 

  43. Nguyen, T. B.; Yoon, B.; Nguyen, T. D.; Oh, E.; Ma, Y. F.; Wang, M.; Suhr, J. A facile salt-templating synthesis route of bamboo-derived hierarchical porous carbon for supercapacitor applications. Carbon 2023, 206, 383–391.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Yunnan provincial education department scientific research fund project (No. 2022J0815), Special Youth Project for Fundamental Research in Yunnan Province (No. 202301AU070227), the National Natural Science Foundation of China (No. 12264056), and Yunnan Expert Workstation (No. 202205AF150008). Prof. Z. W. would like to thank the support from the International Joint Research Center for Intelligent Nano Environmental Protection New Materials and Testing Technology (No. SDGH2108), the Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Project, and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices. The authors thank the Shiyanjia Lab (www.shiyanjia.com) for their assistance with ICP and XPS characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingkai Liu, Ding Zhang or Zhen Wen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, Q., Yuwen, C., Liu, Y. et al. Mn single-atoms decorated CNT electrodes for high-performance supercapacitors. Nano Res. 17, 4039–4046 (2024). https://doi.org/10.1007/s12274-023-6279-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6279-5

Keywords

Navigation