Skip to main content
Log in

Organic ligand nanoarchitectonics for BiVO4 photoanodes surface passivation and cocatalyst grafting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Bismuth vanadate (BiVO4) is a promising photoanode material for efficient photoelectrochemical (PEC) water splitting, whereas its performance is inhibited by detrimental surface states. To solve the problem, herein, a low-cost organic molecule 1,3,5-benzenetricarboxylic acid (BTC) is selected for surface passivation of BiVO4 photoanodes (BVOs), which also provides bonding sites for Co2+ to anchor, resulting in a Co-BTC-BVO photoanode. Owing to its strong coordination with metal ions, BTC not only passivates surface states of BVO, but also provides bonding between BVO and catalytic active sites (Co2+) to form a molecular cocatalyst. Computational study and interfacial charge kinetic investigation reveal that chemical bonding formed at the interface greatly suppresses charge recombination and accelerates charge transfer. The obtained Co-BTC-BVO photoanode exhibits a photocurrent density of 4.82 mA/cm2 at 1.23 V vs. reversible hydrogen electrode (RHE) and a low onset potential of 0.22 VRHE under AM 1.5 G illumination, which ranks among the best photoanodes coupled with Co-based cocatalysts. This work presents a novel selection of passivation layers and emphasizes the significance of interfacial chemical bonding for the construction of efficient photoanodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sivula, K.; van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 2016, 1, 15010.

    Article  CAS  Google Scholar 

  2. Jiang, C. R.; Moniz, S. J. A.; Wang, A. Q.; Zhang, T.; Tang, J. W. Photoelectrochemical devices for solar water splitting-materials and challenges. Chem. Soc. Rev. 2017, 46, 4645–4660.

    Article  CAS  PubMed  Google Scholar 

  3. Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.

    Article  PubMed  Google Scholar 

  4. Trześniewski, B. J.; Smith, W. A. Photocharged BiVO4 photoanodes for improved solar water splitting. J. Mater. Chem. A 2016, 4, 2919–2926.

    Article  Google Scholar 

  5. Kan, M.; Xue, D. Q.; Jia, A. H.; Qian, X. F.; Yue, D. T.; Jia, J. P.; Zhao, Y. X. A highly efficient nanoporous BiVO4 photoelectrode with enhanced interface charge transfer Co-catalyzed by molecular catalyst. Appl. Catal. B 2018, 225, 504–511.

    Article  CAS  Google Scholar 

  6. Li, X.; Liu, S. W.; Fan, K.; Liu, Z. Q.; Song, B.; Yu, J. G. MOF-based transparent passivation layer modified ZnO nanorod arrays for enhanced photo-electrochemical water splitting. Adv. Energy Mater. 2018, 8, 1800101.

    Article  Google Scholar 

  7. Li, D. Y.; Huang, Y. L.; Ma, R. J.; Liu, H.; Liang, Q.; Han, Y.; Ren, Z. W.; Liu, K.; Fong, P. W. K.; Zhang, Z. Q. et al. Surface regulation with polymerized small molecular acceptor towards efficient inverted perovskite solar cells. Adv. Energy Mater. 2023, 13, 2204247.

    Article  CAS  Google Scholar 

  8. Mao, L. L.; Huang, Y. C.; Deng, H.; Meng, F. Q.; Fu, Y. M.; Wang, Y. Q.; Li, M. T.; Zhang, Q. H.; Dong, C. L.; Gu, L. et al. Synergy of ultrathin CoOx overlayer and nickel single atoms on hematite nanorods for efficient photo-electrochemical water splitting. Small 2023, 19, 2203838.

    Article  CAS  Google Scholar 

  9. Zhang, S. C.; Liu, Z. F.; Chen, D.; Yan, W. G. An efficient hole transfer pathway on hematite integrated by ultrathin Al2O3 interlayer and novel CuCoOx. cocatalyst for efficient photoelectrochemical water oxidation. Appl. Catal. B 2020, 277, 119197.

    Article  CAS  Google Scholar 

  10. Fu, S. R.; Hu, H. Y.; Feng, C. C.; Zhang, Y. J.; Bi, Y. P. Epitaxial growth of ZnWO4 hole-storage nanolayers on ZnO photoanodes for efficient solar water splitting. J. Mater. Chem. A 2019, 7, 2513–2517.

    Article  CAS  Google Scholar 

  11. Ning, X. M.; Du, P. Y.; Han, Z. G.; Chen, J.; Lu, X. Q. Insight into the transition-metal hydroxide cover layer for enhancing photoelectrochemical water oxidation. Angew. Chem., Int. Edit. 2021, 60, 3504–3509.

    Article  CAS  Google Scholar 

  12. Usman, E.; Vishlaghi, M. B.; Kahraman, A.; Solati, N.; Kaya, S. Modifying the electron-trapping process at the BiVO4 surface states via the TiO2 overlayer for enhanced water oxidation. ACS Appl. Mater. Interfaces 2021, 13, 60602–60611.

    Article  CAS  PubMed  Google Scholar 

  13. Varadhan, P.; Fu, H. C.; Priante, D.; Retamal, J. R. D.; Zhao, C.; Ebaid, M.; Ng, T. K.; Ajia, I.; Mitra, S.; Roqan, I. S. et al. Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting. Nano Lett. 2017, 17, 1520–1528.

    Article  CAS  PubMed  Google Scholar 

  14. Li, F.; Jian, J.; Xu, Y. X.; Liu, W.; Ye, Q.; Feng, F.; Li, C.; Jia, L. C.; Wang, H. Q. Surface defect passivation of Ta3N5 photoanode via pyridine grafting for enhanced photoelectrochemical performance. J. Chem. Phys. 2020, 153, 024705.

    Article  CAS  PubMed  Google Scholar 

  15. Firet, N. J.; Venugopal, A.; Blommaert, M. A.; Cavallari, C.; Sahle, C. J.; Longo, A.; Smith, W. A. Chemisorption of anionic species from the electrolyte alters the surface electronic structure and composition of photocharged BiVO4. Chem. Mater. 2019, 31, 7453–7462.

    Article  Google Scholar 

  16. Köppen, M.; Dhakshinamoorthy, A.; Inge, A. K.; Cheung, O.; Angström, J.; Mayer, P.; Stock, N. Synthesis, transformation, catalysis, and gas sorption investigations on the bismuth metal-organic framework CAU-17. Eur. J. Inorg. Chem. 2018, 2018, 3496–3503.

    Article  Google Scholar 

  17. Zhang, R. Q.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Selective photocatalytic conversion of alcohol to aldehydes by singlet oxygen over Bi-based metal-organic frameworks under UV–vis light irradiation. Appl. Catal. B 2019, 254, 463–470.

    Article  CAS  Google Scholar 

  18. Ying, Y. L.; Khezri, B.; Kosina, J.; Pumera, M. Reconstructed bismuth-based metal-organic framework nanofibers for selective CO2-to-formate conversion: Morphology engineering. ChemSusChem 2021, 14, 3402–3412.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, Y. J.; Xu, L. C.; Liu, B. Y.; Wang, X.; Wang, T. S.; Xiao, X.; Wang, S. C.; Huang, W. Engineering BiVO4 and oxygen evolution cocatalyst interfaces with rapid hole extraction for photoelectrochemical water splitting. ACS Catal. 2023, 13, 5938–5948.

    Article  CAS  Google Scholar 

  20. Li, F. S.; Yang, H.; Zhuo, Q. M.; Zhou, D. H.; Wu, X. J.; Zhang, P. L.; Yao, Z. Y.; Sun, L. C. A cobalt@cucurbit[5]uril complex as a highly efficient supramolecular catalyst for electrochemical and photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2021, 60, 1976–1985.

    Article  CAS  Google Scholar 

  21. Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990–994.

    Article  CAS  PubMed  Google Scholar 

  22. Yao, D. Z.; Tang, C.; Vasileff, A.; Zhi, X.; Jiao, Y.; Qiao, S. Z. The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angew. Chem., Int. Ed. 2021, 60, 18178–18184.

    Article  CAS  Google Scholar 

  23. Pan, J. B.; Wang, B. H.; Wang, J. B.; Ding, H. Z.; Zhou, W.; Liu, X.; Zhang, J. R.; Shen, S.; Guo, J. K.; Chen, L. et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angew. Chem., Int. Ed. 2021, 60, 1433–1440.

    Article  CAS  Google Scholar 

  24. Lin, J. Y.; Han, X. J.; Liu, S. Y.; Lv, Y.; Li, X.; Zhao, Y. X.; Li, Y.; Wang, L. Z.; Zhu, S. M. Nitrogen-doped cobalt-iron oxide cocatalyst boosting photoelectrochemical water splitting of BiVO4 photoanodes. Appl. Catal. B 2023, 320, 121947.

    Article  CAS  Google Scholar 

  25. Zhu, S. M.; Yan, D. Y. Atom transfer radical polymerization of methyl methacrylate catalyzed by IronII chloride/isophthalic acid system. Macromolecules 2000, 33, 8233–8238.

    Article  CAS  Google Scholar 

  26. Xie, J. L.; Guo, C. X.; Yang, P. P.; Wang, X. D.; Liu, D. Y.; Li, C. M. Bi-functional ferroelectric BiFeO3 passivated BiVO4 photoanode for efficient and stable solar water oxidation. Nano Energy 2017, 31, 28–36.

    Article  CAS  Google Scholar 

  27. Lu, Y. M.; Su, J. Z.; Shi, J. W.; Zhou, D. Surface recombination passivation of the BiVO4 photoanode by the synergistic effect of the cobalt/nickel sulfide cocatalyst. ACS Appl. Energy Mater. 2020, 3, 9089–9097.

    Article  CAS  Google Scholar 

  28. Wang, S. C.; He, T. W.; Chen, P.; Du, A. J.; Ostrikov, K.; Huang, W.; Wang, L. Z. In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes. Adv. Mater. 2020, 32, 2001385.

    Article  CAS  Google Scholar 

  29. Prabhakar, R. R.; Moehl, T.; Friedrich, D.; Kunst, M.; Shukla, S.; Adeleye, D.; Damle, V. H.; Siol, S.; Cui, W.; Gouda, L. et al. Sulfur treatment passivates bulk defects in Sb2Se3 photocathodes for water splitting. Adv. Funct. Mater. 2022, 32, 2112184.

    Article  CAS  Google Scholar 

  30. Zhang, M. Y.; Antony, R. P.; Chiam, S. Y.; Abdi, F. F.; Wong, L. H. Understanding the roles of NiOx in enhancing the photoelectrochemical performance of BiVO4 photoanodes for solar water splitting. ChemSusChem 2019, 12, 2022–2028.

    Article  CAS  PubMed  Google Scholar 

  31. Sun, Q.; Cheng, T.; Liu, Z. R.; Qi, L. M. A cobalt silicate modified BiVO4 photoanode for efficient solar water oxidation. Appl. Catal. B 2020, 277, 119189.

    Article  CAS  Google Scholar 

  32. Dai, Y. W.; Cheng, P.; Xie, G. C.; Li, C. C.; Akram, M. Z.; Guo, B. D.; Boddula, R.; Shi, X. H.; Gong, J. L.; Gong, J. R. Modulating photoelectrochemical water-splitting activity by charge-storage capacity of electrocatalysts. J. Phys. Chem. C 2019, 123, 28753–28762.

    Article  CAS  Google Scholar 

  33. Li, Y.; Dai, X. Y.; Bu, Y. Y.; Zhang, H. Z.; Liu, J.; Yuan, W. Y.; Guo, X. H.; Ao, J. P. Photoelectrochemical performance improving mechanism: Hybridization appearing at the energy band of BiVO4 photoanode by doped quantum layers modification. Small 2022, 18, 2200454.

    Article  CAS  Google Scholar 

  34. Liu, Z. Y.; Wu, X. F.; Zheng, B. N.; Sun, Y.; Hou, C. M.; Wu, J.; Huang, K. K.; Feng, S. H. Cobalt-plasma treatment enables structural reconstruction of a CoOx/BiVO4 composite for efficient photoelectrochemical water splitting. Chem. Commun. 2022, 58, 9890–9893.

    Article  CAS  Google Scholar 

  35. Wang, S. C.; Chen, P.; Yun, J. H.; Hu, Y. X.; Wang, L. Z. An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2017, 56, 8500–8504.

    Article  CAS  Google Scholar 

  36. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

    Article  CAS  PubMed  Google Scholar 

  37. Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Hamann, T.; Bisquert, J. Water oxidation at hematite photoelectrodes: The role of surface states. J. Am. Chem. Soc. 2012, 134, 4294–4302.

    Article  CAS  PubMed  Google Scholar 

  38. Lopes, T.; Andrade, L.; Le Formal, F.; Gratzel, M.; Sivula, K.; Mendes, A. Hematite photoelectrodes for water splitting: Evaluation of the role of film thickness by impedance spectroscopy. Phys. Chem. Chem. Phys. 2014, 16, 16515–16523.

    Article  CAS  PubMed  Google Scholar 

  39. Agarwal, P.; Orazem, M. E.; Garcia-Rubio, L. H. Measurement models for electrochemical impedance spectroscopy: I. Demonstration of applicability. J. Electrochem. Soc. 1992, 139, 1917–1927.

    Article  CAS  Google Scholar 

  40. Abouzari, M. R. S.; Berkemeier, F.; Schmitz, G.; Wilmer, D. On the physical interpretation of constant phase elements. Solid State Ionics 2009, 180, 922–927.

    Article  Google Scholar 

  41. Chang, S. H.; Liou, J. S.; Liu, J. L.; Chiu, Y. F.; Xu, C. H.; Chen, B. Y.; Chen, J. Z. Feasibility study of surface-modified carbon cloth electrodes using atmospheric pressure plasma jets for microbial fuel cells. J. Power Sources 2016, 336, 99–106.

    Article  CAS  Google Scholar 

  42. Wang, S. C.; He, T. W.; Yun, J. H.; Hu, Y. X.; Xiao, M.; Du, A. J.; Wang, L. Z. New iron-cobalt oxide catalysts promoting BiVO4 films for photoelectrochemical water splitting. Adv. Funct. Mater. 2018, 28, 1802685.

    Article  Google Scholar 

  43. Kresse, G.; Furthmuller, J. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  44. Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors kindly acknowledge the financial support from the National Natural Science Foundation of China (No. 51672173, U1733130); Shanghai Science and Technology Committee (Nos. 21ZR1435700, 18520744700, and 18JC1410500); and Shanghai Jiao Tong University Medical Engineering Cross Research Program (No. YG2023ZD18). The computations in this paper were run on the Siyuan-1 cluster supported by the Center for High Performance Computing at Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shenmin Zhu or Lianzhou Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Li, X., Wang, Z. et al. Organic ligand nanoarchitectonics for BiVO4 photoanodes surface passivation and cocatalyst grafting. Nano Res. 17, 3667–3674 (2024). https://doi.org/10.1007/s12274-023-6262-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6262-1

Keywords

Navigation