Skip to main content
Log in

Structure regulating of metal clusters in carbonized metallic organic frameworks for high-efficient microwave absorption via tuning interaction strength between metals and ligands

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbonized metallic organic frameworks (CMOF) have been attracting attention in microwave absorption (MA) research area because of their diverse structures, tunable compositions, and rich porosity. Herein, structure regulation on metal clusters in CMOF is achieved by tuning the interaction strength between metals and ligands to enhance microwave absorption performance. Due to relatively weak interaction among copper cations and ligands, copper nanoclusters (CuNC) can be uniformly formed and embedded within the cobalt/zinc (Co/Zn) CMOF. Firstly, copper cations are added to the Co/Zn bimetallic zeolitic imidazolate frameworks (ZIFs). Secondly, the CMOF composite particles with CuNCs (CuNCs/CoZn-CMOF) were developed by a pyrolysis process. The CuNCs/CoZn-CMOF with an appropriate amount of CuNCs can harmonize both dielectric and magnetic losses. As a result, the minimum reflection loss (RLmin) reaches −45.1 dB at a matching thickness of 2.30 mm and the effective absorption bandwidth (EAB) is 8.80 GHz at a thickness of 3.10 mm. The broadband response to electromagnetic waves is attributed to interfacial polarization at CuNCs surface and heterogeneous interfaces, impedance matching and multiple scattering of electromagnetic waves. This study provides a feasible method to develop CMOF microwave absorption materials with high EAB values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

    Article  ADS  CAS  Google Scholar 

  2. Bao, S. S.; Zhang, M. X.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Advances in microwave absorbing materials with broad-bandwidth response. Nano Res. 2023, 16, 11054–11083.

    Article  ADS  Google Scholar 

  3. Yang, Y.; Luo, C. L.; Chen, X. D.; Wang, M. Sustainable electromagnetic shielding graphene/nanocellulose thin films with excellent joule heating and mechanical properties via in-situ mechanical exfoliation and crosslinking with cations. Compos. Sci. Technol. 2023, 233, 109913.

    Article  CAS  Google Scholar 

  4. Luo, C. L.; Huang, M. L.; Sun, C.; Zhao, K. Y.; Hu, Z. Q.; Wang, M. Achieving high joule heating and self-cleaning performance in copper-coated fabrics with excellent microwave shielding. Cellulose 2023, 30, 5987–6000.

    Article  CAS  Google Scholar 

  5. Wu, Y.; Chen, L.; Han, Y. X.; Liu, P. B.; Xu, H. H.; Yu, G. Z.; Wang, Y. Y.; Wen, T.; Ju, W. B.; Gu, J. W. Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 2023, 16, 7801–7809.

    Article  ADS  CAS  Google Scholar 

  6. Zhao, K. Y.; Luo, C. L.; Sun, C.; Huang, M. L.; Wang, M. Construction of heterogeneous interfaces on Ti3AlC2 micro-particles via surface dotting liquid metal to enhance electromagnetic wave absorption performance. Composites 2023, 173, 107640.

    Article  CAS  Google Scholar 

  7. Yang, D.; Tao, J. R.; Yang, Y.; He, Q. M.; Wang, M. Robust microwave absorption in silver-cobalt hollow microspheres with heterointerfaces and electric-magnetic synergism: Towards achieving lightweight and absorption-type microwave shielding composites. J. Mater. Sci. Technol. 2023, 138, 245–255.

    Article  CAS  Google Scholar 

  8. Wu, Y.; Tan, S. J.; Zhang, T. C.; Zhou, M.; Fang, G.; Ji, G. B. Alkali and ion exchange co-modulation strategies to design magnetic-dielectric synergistic nano-absorbers for tailoring microwave absorption. Nano Res. 2023, 16, 8522–8532.

    Article  ADS  CAS  Google Scholar 

  9. Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

    Article  CAS  Google Scholar 

  10. Tao, J. R.; Luo, C. L.; Huang, M. L.; Weng, Y. X.; Wang, M. Construction of unique conductive networks in carbon nanotubes/polymer composites via poly(ε-caprolactone) inducing partial aggregation of carbon nanotubes for microwave shielding enhancement. Composites 2023, 164, 107304.

    Article  CAS  Google Scholar 

  11. Zhang, F.; Jia, Z. R.; Zhou, J. X.; Liu, J. K.; Wu, G. L.; Yin, P. F. Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 450, 138205.

    Article  CAS  Google Scholar 

  12. Liang, J.; Chen, J.; Shen, H. Q.; Hu, K. T.; Zhao, B. N.; Kong, J. Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chem. Mater. 2021, 33, 1789–1798.

    Article  CAS  Google Scholar 

  13. Liu, J. L.; Zhang, L. M.; Wu, H. J. Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through f-regulation engineering. Adv. Funct. Mater. 2022, 32, 2110496.

    Article  CAS  Google Scholar 

  14. Wang, M.; Tang, X. H.; Cai, J. H.; Wu, H.; Shen, J. B.; Guo, S. Y. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon 2021, 177, 377–402.

    Article  CAS  Google Scholar 

  15. Chen, Y.; Li, J. Z.; Li, T.; Zhang, L. K.; Meng, F. B. Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon 2021, 180, 163–184.

    Article  CAS  Google Scholar 

  16. Wei, H. Y.; Zhang, Z. P.; Hussain, G.; Zhou, L. S.; Li, Q.; Ostrikov, K. Techniques to enhance magnetic permeability in microwave absorbing materials. Appl. Mater. Today 2020, 19, 100596.

    Article  Google Scholar 

  17. Liang, L. L.; Gu, W. H.; Wu, Y.; Zhang, B. S.; Wang, G. H.; Yang, Y.; Ji, G. B. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195.

    Article  CAS  Google Scholar 

  18. Lv, H. L.; Yang, Z. H.; Pan, H. G.; Wu, R. B. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 2022, 127, 100946.

    Article  CAS  Google Scholar 

  19. Xu, Y. L.; Uddin, A.; Estevez, D.; Luo, Y.; Peng, H. X.; Qin, F. X. Lightweight microwire/graphene/silicone rubber composites for efficient electromagnetic interference shielding and low microwave reflectivity. Compos. Sci. Technol. 2020, 189, 108022.

    Article  CAS  Google Scholar 

  20. Hou, T. Q.; Jia, Z. R.; Wang, B. B.; Li, H. B.; Liu, X. H.; Bi, L.; Wu, G. L. MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber. Chem. Eng. J. 2021, 414, 128875.

    Article  CAS  Google Scholar 

  21. Li, J.; Miao, P.; Chen, K. J.; Cao, J. W.; Liang, J.; Tang, Y. S.; Kong, J. Highly effective electromagnetic wave absorbing prismatic Co/C nanocomposites derived from cubic metal-organic framework. Composites 2020, 182, 107613.

    Article  CAS  Google Scholar 

  22. Gao, S.; Wang, G. S.; Guo, L.; Yu, S. H. Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 2020, 16, 1906668.

    Article  CAS  Google Scholar 

  23. Zhu, S. Q.; Shu, J. C.; Cao, M. S. Tailorable MOF architectures for high-efficiency electromagnetic functions. Mater. Chem. Front. 2021, 5, 6444–6460.

    Article  CAS  Google Scholar 

  24. Wei, C. H.; He, M. K.; Li, M. Q.; Ma, X.; Dang, W. L.; Liu, P. B.; Gu, J. W. Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption. Mater. Today Phys. 2023, 36, 101142.

    Article  CAS  Google Scholar 

  25. Li, Q. S.; Liu, Q. C.; Kong, X. K. Noncovalent heterointerface on boron-carbon hybrid for improved microwave absorption. J. Mater. Sci. 2020, 55, 14345–14357.

    Article  ADS  CAS  Google Scholar 

  26. He, G. H.; Duan, Y. P.; Pang, H. F. Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 2020, 12, 57.

    Article  ADS  CAS  Google Scholar 

  27. Liang, S. J.; Cheng, B.; Cui, X. Y.; Miao, F. Van der Waals heterostructures for high-performance device applications: Challenges and opportunities. Adv. Mater. 2020, 32, 1903800.

    Article  CAS  Google Scholar 

  28. Ren, H. S.; Li, T.; Wang, H. G.; Guo, Z. H.; Chen, T. L.; Meng, F. B. Two birds with one stone: Superhelical chiral polypyrrole towards high-performance electromagnetic wave absorption and corrosion protection. Chem. Eng. J. 2022, 427, 131582.

    Article  CAS  Google Scholar 

  29. Liu, J. L.; Zhang, L. M.; Zang, D. Y.; Wu, H. J. A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv. Funct. Mater. 2021, 31, 2105018.

    Article  CAS  Google Scholar 

  30. Hu, Q.; Fang, Y.; Du, Z.; Guo, Z. L.; Liu, Z. Y.; Huang, Y.; Lin, J.; Tang, C. C. Controllable synthesis and enhanced microwave absorption properities of novel lightweight graphene quantum dots/hexagonal boron nitride composites. Carbon 2021, 182, 134–143.

    Article  CAS  Google Scholar 

  31. Zhang, W. J.; Huang, J. K.; Chen, C. H.; Chang, Y. H.; Cheng, Y. J.; Li, L. J. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 2013, 25, 3456–3461.

    Article  CAS  PubMed  Google Scholar 

  32. Luo, X. X.; Zhang, K. K.; Zhou, Y. Y.; Wu, H. J.; Xie, H. In situ construction of Fe3Al@Al2O3 core–shell particles with excellent electromagnetic absorption. J. Colloid Interface Sci. 2022, 611, 306–316

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Ding, Z. Z.; Du, Z. J.; Liu, Y.; Zhang, Q. C.; Zhao, Z. X.; Hou, M. M.; Wang, X. Y.; Hassan, Y. A.; Huang, X. Z.; Yue, J. J. et al. Reduced graphene oxide loaded with rich defects CoO/Co3O4 for broadband microwave absorption. Composites 2023, 249, 110403.

    Article  CAS  Google Scholar 

  34. Zhou, P. P.; Wang, X. K.; Song, Z.; Wang, M.; Huang, W. T.; Yu, M. X.; Wang, L. X.; Zhang, Q. T. Multi-dimensional ordered mesoporous carbon/silica@Ni composite with hierarchical nanostructure for strong and broadband microwave absorption. Carbon 2021, 176, 209–218.

    Article  CAS  Google Scholar 

  35. Li, Y.; Qing, Y. C.; Zhou, Y. F.; Zhao, B.; Zhi, Q.; Fan, B. B.; Zhang, R. Unique nanoporous structure derived from Co3O4-C and Co/CoO-C composites towards the ultra-strong electromagnetic absorption. Composites 2021, 213, 108731.

    Article  CAS  Google Scholar 

  36. Wang, L.; Chen, Z.; Wang, X.; Zhang, L. Y.; Zhang, Z. T.; Zhao, Q.; Gao, Y. F. Fe3O4@C 3D foam for strong low-frequency microwave absorption. J. Materiom. 2023, 9, 148–156.

    Article  Google Scholar 

  37. Sultanov, F.; Daulbayev, C.; Bakbolat, B.; Daulbayev, O. Advances of 3D graphene and its composites in the field of microwave absorption. Adv. Colloid Interface Sci. 2020, 285, 102281.

    Article  CAS  PubMed  Google Scholar 

  38. Li, D. M.; Pan, W. H.; Wang, T.; Wang, X.; Gong, R. Z. 3D printed lightweight metastructure with microwave absorption and mechanical resistance. Mater. Des. 2023, 225, 111506

    Article  Google Scholar 

  39. Zhou, C. L.; Wang, X. X.; Luo, H.; Deng, L. W.; Wang, S. L.; Wei, S.; Zheng, Y. W.; Jia, Q.; Liu, J. Q. Interfacial design of sandwichlike CoFe@Ti3C2Tx composites as high efficient microwave absorption materials. Appl. Surf. Sci. 2019, 494, 540–550.

    Article  ADS  CAS  Google Scholar 

  40. Wen, B.; Cao, M. S.; Hou, Z. L.; Song, W. L.; Zhang, L.; Lu, M. M.; Jin, H. B.; Fang, X. Y.; Wang, W. Z.; Yuan, J. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 2013, 65, 124–139.

    Article  CAS  Google Scholar 

  41. Li, T. T.; Xia, L.; Yang, H.; Wang, X. Y.; Zhang, T.; Huang, X. X.; Xiong, L.; Qin, C. L.; Wen, G. W. Construction of a Cu-Sn heterojunction interface derived from a schottky junction in Cu@Sn/rGO composites as a highly efficient dielectric microwave absorber. ACS Appl. Mater. Interfaces 2021, 13, 11911–11919.

    Article  CAS  PubMed  Google Scholar 

  42. Zeng, X. J.; Li, E. G. N.; Xia, G. H.; Xie, N. H.; Shen, Z. Y.; Moskovits, M.; Yu, R. H. Silica-based ceramics toward electromagnetic microwave absorption. J. Eur. Ceram. Soc. 2021, 41, 7381–7403.

    Article  CAS  Google Scholar 

  43. Huang, M. Q.; Wang, L.; Pei, K.; You, W. B.; Yu, X. F.; Wu, Z. C.; Che, R. C. Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 2020, 16, 2000158.

    Article  CAS  Google Scholar 

  44. Xiang, Z. N.; Xu, B. K.; He, Q. C.; Wang, Y. Q.; Yin, X. M. Synergistic magnetic/dielectric loss of Fe3Si/SiC composites for efficient electromagnetic wave absorption. Chem. Eng. J. 2023, 457, 141198.

    Article  CAS  Google Scholar 

  45. Shu, R. W.; Li, X. H.; Ge, C. Q.; Wang, L. Y. Synthesis of FeCoNi/C decorated graphene composites derived from trimetallic metal-organic framework as ultrathin and high-performance electromagnetic wave absorbers. J. Colloid Interface Sci. 2023, 630, 754–762.

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Ren, S. N.; Yu, H. J.; Wang, L.; Huang, Z. K.; Lin, T. F.; Huang, Y. D.; Yang, J.; Hong, Y. C.; Liu, J. Y. State of the art and prospects in metal-organic framework-derived microwave absorption materials. Nano-Micro Lett. 2022, 14, 68.

    Article  ADS  CAS  Google Scholar 

  47. Wu, F.; Wan, L. Y.; Li, Q. Y.; Zhang, Q. Y.; Zhang, B. L. Ternary assembled MOF-derived composite: Anisotropic epitaxial growth and microwave absorption. Composites 2022, 236, 109839.

    Article  CAS  Google Scholar 

  48. Sun, C.; Zhao, K. Y.; Huang, M. L.; Luo, C. L.; Chen, X. D.; Wu, H. J.; Wang, M. Heterointerface construction for permalloy microparticles through the surface modification of bilayer metallic organic frameworks: Toward microwave absorption enhancement. J. Colloid Interface Sci. 2023, 644, 454–465.

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Zhu, H. H.; Liang, J.; Jiao, X. G.; Fu, R. R.; Jiao, Q. Z.; Feng, C. H.; Li, H. S.; Zhang, Y. Y.; Zhao, Y. MOF-derived core-shell structured Cu9S5/NC@Co3S4/NC composite as a high-efficiency electromagnetic wave absorber. Ceram. Int. 2023, 49, 9534–9542.

    Article  CAS  Google Scholar 

  50. Ren, Y. J.; Wang, X.; Ma, J. X.; Zheng, Q.; Wang, L. J.; Jiang, W. Metal-organic framework-derived carbon-based composites for electromagnetic wave absorption: Dimension design and morphology regulation. J. Mater. Sci. Technol. 2023, 132, 223–251.

    Article  CAS  Google Scholar 

  51. Yang, K.; Cui, Y. H.; Wan, L. Y.; Zhang, Q. Y.; Zhang, B. L. MOF-derived magnetic-dielectric balanced Co@ZnO@N-doped carbon composite materials for strong microwave absorption. Carbon 2022, 190, 366–375.

    Article  CAS  Google Scholar 

  52. Hu, Q. M.; Yang, R. L.; Yang, S. D.; Huang, W. B.; Zeng, Z. P.; Gui, X. C. Metal-organic framework-derived core-shell nanospheres anchored on Fe-filled carbon nanotube sponge for strong wideband microwave absorption. ACS Appl. Mater. Interfaces 2022, 14, 10577–10587.

    Article  CAS  PubMed  Google Scholar 

  53. Liu, Y.; Zhou, X. F.; Jia, Z. R.; Wu, H. J.; Wu, G. L. Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 2022, 32, 2204499.

    Article  CAS  Google Scholar 

  54. Fonseca, J.; Gong, T. H.; Jiao, L.; Jiang, H. L. Metal-organic frameworks (MOFs) beyond crystallinity: Amorphous MOFs, MOF liquids and MOF glasses. J. Mater. Chem. A 2021, 9, 10562–10611.

    Article  CAS  Google Scholar 

  55. Guo, S. Y.; Bao, Y. F.; Li, Y.; Guan, H. L.; Lei, D. Y.; Zhao, T. J.; Zhong, B. M.; Li, Z. H. Super broadband absorbing hierarchical CoFe alloy/porous carbon@carbon nanotubes nanocomposites derived from metal-organic frameworks. J. Mater. Sci. Technol. 2022, 118, 218–228.

    Article  CAS  Google Scholar 

  56. Feng, W.; Wang, Y. M.; Chen, J. C.; Li, B. Q.; Guo, L. X.; Ouyang, J. H.; Jia, D. C.; Zhou, Y. Metal organic framework-derived CoZn alloy/N-doped porous carbon nanocomposites: Tunable surface area and electromagnetic wave absorption properties. J. Mater. Chem. C 2018, 6, 10–18.

    Article  CAS  Google Scholar 

  57. Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107.

    Article  ADS  CAS  Google Scholar 

  58. Luo, J. H.; Feng, M. N.; Dai, Z. Y.; Jiang, C. Y.; Yao, W.; Zhai, N. X. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 2022, 15, 5781–5789.

    Article  ADS  CAS  Google Scholar 

  59. Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

    Article  CAS  Google Scholar 

  60. Wang, L.; Yu, X. F.; Li, X.; Zhang, J.; Wang, M.; Che, R. C. MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 2020, 383, 123099.

    Article  CAS  Google Scholar 

  61. He, Y. F.; Liu, Y. N.; Yan, X.; Qin, G. Y.; Liu, Y. H.; Zhong, B.; Xia, L.; Liu, D. D.; Zhou, Y.; Huang, X. X. Mesoscopically ordered Fe3O4/C nano-composite for superior broadband electromagnetic wave absorption. Composites 2022, 158, 106983

    Article  CAS  Google Scholar 

  62. Li, C. J.; Qian, X.; Hao, M. Y.; Wang, X. F.; Zhu, S. Q.; Guo, M.; Gong, H. T.; Zhang, Y. G. Outstanding electromagnetic wave absorption performance of polyacrylonitrile-based ultrahigh modulus carbon fibers decorated with CoZn-bimetallic ZIFs. J. Alloys Compd. 2023, 950, 169912.

    Article  CAS  Google Scholar 

  63. Gao, Z. G.; Xu, B. H.; Ma, M. L.; Feng, A. L.; Zhang, Y.; Liu, X. H.; Jia, Z. R.; Wu, G. L. Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption. Composites 2019, 179, 107417.

    Article  CAS  Google Scholar 

  64. Li, X. H.; Wang, L.; Li, X.; Zhang, J.; Wang, M.; Che, R. C. Multidimensional ZnO@MWCNTs assembly derived from MOF-5 heterojunction as highly efficient microwave absorber. Carbon 2021, 172, 15–25.

    Article  CAS  Google Scholar 

  65. Zhang, X. M.; Ji, G. B.; Liu, W.; Zhang, X. X.; Gao, Q. W.; Li, Y. C.; Du, Y. W. A novel Co/TiO2 nanocomposite derived from a metal-organic framework: Synthesis and efficient microwave absorption. J. Mater. Chem. C 2016, 4, 1860–1870.

    Article  CAS  Google Scholar 

  66. Shu, R. W.; Li, W. J.; Wu, Y.; Zhang, J. B.; Zhang, G. Y.; Zheng, M. D. Fabrication of nitrogen-doped cobalt oxide/cobalt/carbon nanocomposites derived from heterobimetallic zeolitic imidazolate frameworks with superior microwave absorption properties. Composites 2019, 178, 107518.

    Article  CAS  Google Scholar 

  67. Wang, Y. Q.; Wang, H. G.; Ye, J. H.; Shi, L. Y.; Feng, X. Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123096.

    Article  CAS  Google Scholar 

  68. Wei, S.; Chen, T.; Wang, Q.; Shi, Z. C.; Li, W.; Chen, S. G. Metal-organic framework derived hollow CoFe@C composites by the tunable chemical composition for efficient microwave absorption. J. Colloid Interface Sci. 2021, 593, 370–379.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (No. 52173264) for financial support. This work acknowledges the support of the Science Compass Agency for their assistance in conducting the transmission electron microscopy tests. Besides, we also express our gratitude to Prof. Dong-Rong Xiao in Southwest University for his valuable feedback and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Wang.

Electronic Supplementary Material

12274_2023_6255_MOESM1_ESM.pdf

Structure regulating of metal clusters in carbonized metallic organic frameworks for high-efficient microwave absorption via tuning interaction strength between metals and ligands

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Zhao, KY., Huang, ML. et al. Structure regulating of metal clusters in carbonized metallic organic frameworks for high-efficient microwave absorption via tuning interaction strength between metals and ligands. Nano Res. 17, 1699–1709 (2024). https://doi.org/10.1007/s12274-023-6255-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6255-0

Keywords

Navigation