Skip to main content
Log in

Dynamic shielding of bacterial outer membrane vesicles for safe and efficient chemo-immunotherapy against tumors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Bacterial outer membrane vesicles (OMVs) are potent immunostimulants of regulating the tumor microenvironment (TME) for immunotherapy, and can be used to deliver drugs. However, the severe systemic inflammatory response triggered by OMVs upon intravenous (i.v.) injection has limited their application. Here, we developed a safe and effective strategy by conjugating doxorubicin-loaded serum albumin (SA-DOX, AD) onto the surface of OMVs using a matrix metalloproteinase (MMP)-cleavable peptide linker (cL). This approach enabled the dynamic shielding of OMVs to reduce the systemic side effects while simultaneously enhancing the anti-tumor effects through chemo-immunotherapy. Specifically, the resulting OMV-cL-AD formulation exhibited significantly enhanced accumulation at the tumor site after i.v. administration, facilitated by the SA decoration on the OMVs surface. Subsequently, the shield on the OMV-cL-AD was cleaved by the over-expressed MMP in the TME, leading to the release of both OMVs and AD. This process provided OMV-induced immunotherapy and DOX-induced chemotherapy, resulting in synergistic tumor inhibition. In conclusion, our work demonstrated the potential of OMV-cL-AD as an effective immunochemotherapy strategy that can prolong the survival time of mice without inducing side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dai, H. X.; Fan, Q.; Wang, C. Recent applications of immunomodulatory biomaterials for disease immunotherapy. Exploration 2022, 2, 20210157.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Long, Q.; Zheng, P.; Zheng, X.; Li, W. R.; Hua, L. Q.; Yang, Z. Q.; Huang, W. W.; Ma, Y. B. Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy. Adv. Drug Deliv. Rev. 2022, 186, 114321.

    Article  CAS  PubMed  Google Scholar 

  3. Suri, K.; D’Souza, A.; Huang, D.; Bhavsar, A.; Amiji, M. Bacterial extracellular vesicle applications in cancer immunotherapy. Bioact. Mater. 2023, 22, 551–566.

    CAS  PubMed  Google Scholar 

  4. Cao, Z. P.; Liu, J. Y. Bacteria and bacterial derivatives as drug carriers for cancer therapy. J. Control. Release 2020, 326, 396–407.

    Article  CAS  PubMed  Google Scholar 

  5. Kang, S. R.; Nguyen, D. H.; Yoo, S. W.; Min, J. J. Bacteria and bacterial derivatives as delivery carriers for immunotherapy. Adv. Drug Deliv. Rev. 2022, 181, 114085.

    Article  CAS  PubMed  Google Scholar 

  6. Zhuang, W. R.; Wang, Y. F.; Lei, Y.; Zuo, L. P.; Jiang, A. Q.; Wu, G. H.; Nie, W. D.; Huang, L. L.; Xie, H. Y. Phytochemical engineered bacterial outer membrane vesicles for photodynamic effects promoted immunotherapy. Nano Lett. 2022, 22, 4491–4500.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Li, Y.; Zhang, K. Y.; Wu, Y.; Yue, Y. L.; Cheng, K. M.; Feng, Q. Q.; Ma, X. T.; Liang, J.; Ma, N. N.; Liu, G. N. et al. Antigen capture and immune modulation by bacterial outer membrane vesicles as in situ vaccine for cancer immunotherapy post-photothermal therapy. Small 2022, 18, e2107461.

    Article  PubMed  Google Scholar 

  8. Chen, Q.; Bai, H. Z.; Wu, W. T.; Huang, G. J.; Li, Y.; Wu, M.; Tang, G. P.; Ping, Y. Bioengineering bacterial vesicle-coated polymeric nanomedicine for enhanced cancer immunotherapy and metastasis prevention. Nano Lett. 2020, 20, 11–21.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Schwechheimer, C.; Kuehn, M. J. Outer-membrane vesicles from gram-negative bacteria: Biogenesis and functions. Nat. Rev. Microbiol. 2015, 13, 605–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, S. L.; Lei, Q.; Zou, X. H.; Ma, D. D. The role and mechanisms of gram-negative bacterial outer membrane vesicles in inflammatory diseases. Front. Immunol. 2023, 14, 1157813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kulp, A.; Kuehn, M. J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 2010, 64, 163–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cao, Z. P.; Liu, R.; Wang, C. H.; Lin, S. S.; Wang, L.; Pang, Y. Fluorescence-activating and absorption-shifting nanoprobes for anaerobic tracking of gut microbiota derived vesicles. ACS Nano 2023, 17, 2279–2293.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, X. Y.; Lin, S. S.; Wang, L.; Cao, Z. P.; Zhang, M. M.; Zhang, Y. F.; Liu, R.; Liu, J. Y. Versatility of bacterial outer membrane vesicles in regulating intestinal homeostasis. Sci. Adv. 2023, 9, eade5079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qing, S.; Lyu, C.; Zhu, L.; Pan, C.; Wang, S.; Li, F.; Wang, J. H.; Yue, H.; Gao, X. Y.; Jia, R. R. et al. Biomineralized bacterial outer membrane vesicles potentiate safe and efficient tumor microenvironment reprogramming for anticancer therapy. Adv. Mater. 2020, 32, e2002085.

    Article  PubMed  Google Scholar 

  15. Ban, W. Y.; Sun, M. C.; Huang, H. W.; Huang, W. X.; Pan, S. W.; Liu, P. F.; Li, B. W.; Cheng, Z. G.; He, Z. G.; Liu, F. N. et al. Engineered bacterial outer membrane vesicles encapsulating oncolytic adenoviruses enhance the efficacy of cancer virotherapy by augmenting tumor cell autophagy. Nat. Commun. 2023, 14, 2933.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo, Q.; Li, X. W.; Zhou, W. X.; Chu, Y. C.; Chen, Q. J.; Zhang, Y. W.; Li, C.; Chen, H. Y.; Liu, P. X.; Zhao, Z. H. et al. Sequentially triggered bacterial outer membrane vesicles for macrophage metabolism modulation and tumor metastasis suppression. ACS Nano 2021, 15, 13826–13838.

    Article  CAS  PubMed  Google Scholar 

  17. Vanaja, S. K.; Russo, A. J.; Behl, B.; Banerjee, I.; Yankova, M.; Deshmukh, S. D.; Rathinam, V. A. K. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell 2016, 165, 1106–1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, Y. J.; Wu, J. Y.; Qiu, X. H.; Dong, S. H.; He, J.; Liu, J. H.; Xu, W. J.; Huang, S.; Hu, X. B.; Xiang, D. X. Bacterial outer membrane vesicles-based therapeutic platform eradicates triple-negative breast tumor by combinational photodynamic/chemo-/immunotherapy. Bioact. Mater. 2023, 20, 548–560.

    CAS  PubMed  Google Scholar 

  19. Pfalzgraff, A.; Correa, W.; Heinbockel, L.; Schromm, A. B.; Lübow, C.; Gisch, N.; Martinez-de-Tejada, G.; Brandenburg, K.; Weindl, G. LPS-neutralizing peptides reduce outer membrane vesicle-induced inflammatory responses. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 1503–1513.

    Article  CAS  PubMed  Google Scholar 

  20. Li, Y.; Ma, X. T.; Yue, Y. L.; Zhang, K. Y.; Cheng, K. M.; Feng, Q. Q.; Ma, N. N.; Liang, J.; Zhang, T. J.; Zhang, L. Z. et al. Rapid surface display of mRNA antigens by bacteria-derived outer membrane vesicles for a personalized tumor vaccine. Adv. Mater. 2022, 34, 2109984.

    Article  CAS  Google Scholar 

  21. Gujrati, V.; Kim, S.; Kim, S. H.; Min, J. J.; Choy, H. E.; Kim, S. C.; Jon, S. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano 2014, 8, 1525–1537.

    Article  CAS  PubMed  Google Scholar 

  22. Aktar, S.; Okamoto, Y.; Ueno, S.; Tahara, Y. O.; Imaizumi, M.; Shintani, M.; Miyata, M.; Futamata, H.; Nojiri, H.; Tashiro, Y. Incorporation of plasmid DNA into bacterial membrane vesicles by peptidoglycan defects in Escherichia coli. Front. Microbiol. 2021, 12, 747606.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang, S. H.; Gao, J.; Wang, Z. J. Outer membrane vesicles for vaccination and targeted drug delivery. WIREs Nanomed. Nanobiotechnol. 2019, 11, e1523.

    Article  Google Scholar 

  24. Li, M.; Zhou, H.; Yang, C.; Wu, Y.; Zhou, X. C.; Liu, H.; Wang, Y. C. Bacterial outer membrane vesicles as a platform for biomedical applications: An update. J. Control. Release 2020, 323, 253–268.

    Article  CAS  PubMed  Google Scholar 

  25. Swift, L. P.; Rephaeli, A.; Nudelman, A.; Phillips, D. R.; Cutts, S. M. Doxorubicin-DNA adducts induce a non-topoisomerase II-mediated form of cell death. Cancer Res. 2006, 66, 4863–4871.

    Article  CAS  PubMed  Google Scholar 

  26. Kuerban, K.; Gao, X. W.; Zhang, H.; Liu, J. Y.; Dong, M. X.; Wu, L. N.; Ye, R. H.; Feng, M. Q.; Ye, L. Doxorubicin-loaded bacterial outer-membrane vesicles exert enhanced anti-tumor efficacy in non-small-cell lung cancer. Acta Pharm. Sin. B 2020, 10, 1534–1548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mirzaei-Kalar, Z.; Nejad, Z. K.; Khandar, A. A. New ZnFe2O4@SiO2@graphene quantum dots as an effective nanocarrier for targeted DOX delivery and CT-DNA binder. J. Mol. Liq. 2022, 363, 119904.

    Article  CAS  Google Scholar 

  28. Zhang, L.; Liao, W. Q.; Chen, S. M.; Chen, Y. K.; Cheng, P. R.; Lu, X. J.; Ma, Y. Towards a New 3Rs Era in the construction of 3D cell culture models simulating tumor microenvironment. Front. Oncol. 2023, 13, 1146477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fontana, F.; Marzagalli, M.; Sommariva, M.; Gagliano, N.; Limonta, P. In vitro 3D cultures to model the tumor microenvironment. Cancers (Basel) 2021, 13, 2970.

    Article  CAS  PubMed  Google Scholar 

  30. Kievit, F. M.; Florczyk, S. J.; Leung, M. C.; Veiseh, O.; Park, J. O.; Disis, M. L.; Zhang, M. Q. Chitosan-alginate 3D scaffolds as a mimic of the glioma tumor microenvironment. Biomaterials 2010, 31, 5903–5910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Curvello, R.; Kast, V.; Abuwarwar, M. H.; Fletcher, A. L.; Garnier, G.; Loessner, D. 3D collagen-nanocellulose matrices model the tumour microenvironment of pancreatic cancer. Front. Digit. Health 2021, 3, 704584.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dai, H. X.; Yang, Q. Y.; Sun, R.; Zhang, Y.; Ma, Q. L.; Shen, Y. F.; Wang, B. L.; Chen, Y. T.; Xu, J. L.; Tian, B. et al. Nanoparticle accumulation in liver may induce resistance to immune checkpoint blockade therapy. Nano Res. 2023, 16, 5237–5246.

    Article  ADS  CAS  Google Scholar 

  33. Le-Wendling, L.; Nin, O.; Capdevila, X. Cancer recurrence and regional anesthesia: The theories, the data, and the future in outcomes. Pain Med. 2016, 17, 756–775.

    PubMed  Google Scholar 

  34. Cakmakkaya, O. S.; Kolodzie, K.; Apfel, C. C.; Pace, N. L. Anaesthetic techniques for risk of malignant tumour recurrence. Cochrane Database Syst. Rev. 2014, CD008877.

  35. Aguirre-Ghiso, J. A. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer 2007, 7, 834–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu, B. L.; Cui, Y.; Wang, W. W.; Li, S. S.; Lyu, C.; Wang, S.; Bao, W. E.; Wang, H. Y.; Qin, M.; Liu, Z. et al. Immunomodulation-enhanced nanozyme-based tumor catalytic therapy. Adv Mater. 2020, 32, e2003563.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Beijing Natural Science Foundation (No. JQ21027) and the National Natural Science Foundation of China (Nos. U2001224, 32030062, 21821005, and 82202028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Dong Gao or Wei Wei.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Li, X., Meng, J. et al. Dynamic shielding of bacterial outer membrane vesicles for safe and efficient chemo-immunotherapy against tumors. Nano Res. 17, 836–847 (2024). https://doi.org/10.1007/s12274-023-6225-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6225-6

Keywords

Navigation