Skip to main content
Log in

Nanoparticle accumulation in liver may induce resistance to immune checkpoint blockade therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Despite immune checkpoint blockade (ICB) therapy has transformed cancer treatment, only 20.2% of these patients achieved a response. Understanding resistance mechanisms to ICB is important for the treatment of a wider population. In this work, we occasionally found that the silica nanoparticles (SiO2 NPs) accumulated in the liver can induce resistance to following ICB therapy to a subcutaneous tumor in mice. By analysis of T cells frequency, we uncovered that SiO2 NPs in the liver resulted in a siphoning of T cells from circulation to the liver by produced chemokines. In addition, liver immunosuppressive cells further inhibit the function and induce apoptosis of recruited T cells, leading to a systemic loss and reduced tumor infiltration of T cells, which contributes to poor responses to ICB therapy. However, such effect is not observed in poly(lactic-co-glycolic acid) (PLGA) NPs treated mice under the same conditions, likely due to their much lower immunogenicity in perturbing the liver immune microenvironment, indicating that cancer is not a local disease but an ecosystem that is linked to the distal environment. We further provide a new mechanism insight into ICB resistance induced by liver accumulation of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carlino, M. S.; Larkin, J.; Long, G. V. Immune checkpoint inhibitors in melanoma. Lancet 2021, 398, 1002–1014.

    CAS  Google Scholar 

  2. Fairfax, B. P.; Taylor, C. A.; Watson, R. A.; Nassiri, I.; Danielli, S.; Fang, H.; Mahe, E. A.; Cooper, R.; Woodcock, V.; Traill, Z. et al. Peripheral CD8+ T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma. Nat. Med. 2020, 26, 193–199.

    CAS  Google Scholar 

  3. Spranger, S.; Gajewski, T. F. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat. Rev. Cancer 2018, 18, 139–147.

    CAS  Google Scholar 

  4. Reck, M.; Rodríguez-Abreu, D.; Robinson, A. G.; Hui, R. N.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 2016, 375, 1823–1833.

    CAS  Google Scholar 

  5. Kalbasi, A.; Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 2020, 20, 25–39.

    CAS  Google Scholar 

  6. Yu, J. L.; Green, M. D.; Li, S. S.; Sun, Y. L.; Journey, S. N.; Choi, J. E.; Rizvi, S. M.; Qin, A.; Waninger, J. J.; Lang, X. T. et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat. Med. 2021, 27, 152–164.

    CAS  Google Scholar 

  7. Irvine, D. J.; Dane, E. L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 2020, 20, 321–334.

    CAS  Google Scholar 

  8. Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.

    CAS  Google Scholar 

  9. Fenton, O. S.; Olafson, K. N.; Pillai, P. S.; Mitchell, M. J.; Langer, R. Advances in biomaterials for drug delivery. Adv. Mater. 2018, 30, 1705328.

    Google Scholar 

  10. Zhang, Y. N.; Poon, W.; Tavares, A. J.; McGilvray, I. D.; Chan, W. C. W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release 2016, 240, 332–348.

    CAS  Google Scholar 

  11. Tsoi, K. M.; MacParland, S. A.; Ma, X. Z.; Spetzler, V. N.; Echeverri, J.; Ouyang, B.; Fadel, S. M.; Sykes, E. A.; Goldaracena, N.; Kaths, J. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 2016, 15, 1212–1221.

    CAS  Google Scholar 

  12. Li, J. L.; Chen, C. Y.; Xia, T. Understanding nanomaterial—liver interactions to facilitate the development of safer nanoapplications. Adv. Mater. 2022, 34, 2106456.

    CAS  Google Scholar 

  13. Wu, T. D.; Madireddi, S.; de Almeida, P. E.; Banchereau, R.; Chen, Y. J. J.; Chitre, A. S.; Chiang, E. Y.; Iftikhar, H.; O’Gorman, W. E.; Au-Yeung, A. et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 2020, 579, 274–278.

    CAS  Google Scholar 

  14. Chen, X. Y.; Gao, C. Y. Influences of surface coating of PLGA nanoparticles on immune activation of macrophages. J. Mater. Chem. B 2018, 6, 2065–2077.

    CAS  Google Scholar 

  15. Kapoor, D. N.; Bhatia, A.; Kaur, R.; Sharma, R.; Kaur, G.; Dhawan, S. PLGA: A unique polymer for drug delivery. Ther. Deliv. 2015, 6, 41–58.

    CAS  Google Scholar 

  16. Rosenholm, J. M.; Mamaeva, V.; Sahlgren, C.; Lindén, M. Nanoparticles in targeted cancer therapy: Mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine 2012, 7, 111–120.

    CAS  Google Scholar 

  17. Danhier, F.; Ansorena, E.; Silva, J. M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles:An overview of biomedical applications. J. Control. Release 2012, 161, 505–522.

    CAS  Google Scholar 

  18. Janjua, T. I.; Cao, Y. X.; Yu, C. Z.; Popat, A. Clinical translation of silica nanoparticles. Nat. Rev. Mater. 2021, 6, 1072–1074.

    CAS  Google Scholar 

  19. Ghitman, J.; Biru, E. I.; Stan, R.; Iovu, H. Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Mater. Des. 2020, 193, 108805.

    CAS  Google Scholar 

  20. Wu, S. H.; Mou, C. Y.; Lin, H. P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 2013, 42, 3862–3875.

    CAS  Google Scholar 

  21. Gao, C. L.; Pan, J.; Lu, W. Y.; Zhang, M.; Zhou, L.; Tian, J. In-vitro evaluation of paclitaxel-loaded MPEG-PLGA nanoparticles on laryngeal cancer cells. Anticancer Drugs 2009, 20, 807–814.

    CAS  Google Scholar 

  22. Franco, F.; Jaccard, A.; Romero, P.; Yu, Y. R.; Ho, P. C. Metabolic and epigenetic regulation of T-cell exhaustion. Nat. Metab. 2020, 2, 1001–1012.

    CAS  Google Scholar 

  23. Lin, H.; Wei, S.; Hurt, E. M.; Green, M. D.; Zhao, L. L.; Vatan, L.; Szeliga, W.; Herbst, R.; Harms, P. W.; Fecher, L. A. et al. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J. Clin. Invest. 2018, 128, 805–815.

    Google Scholar 

  24. Iwai, T.; Sugimoto, M.; Patil, N. S.; Bower, D.; Suzuki, M.; Kato, C.; Yorozu, K.; Kurasawa, M.; Shames, D. S.; Kondoh, O. Both T cell priming in lymph node and CXCR3-dependent migration are the key events for predicting the response of atezolizumab. Sci. Rep. 2021, 11, 13912.

    CAS  Google Scholar 

  25. Park, J. K.; Utsumi, T.; Seo, Y. E.; Deng, Y.; Satoh, A.; Saltzman, W. M.; Iwakiri, Y. Cellular distribution of injected PLGA-nanoparticles in the liver. Nanomedicine:Nanotechnol., Biol. Med. 2016, 12, 1365–1374.

    CAS  Google Scholar 

  26. Xie, G. P.; Sun, J.; Zhong, G. R.; Shi, L. Y.; Zhang, D. W. Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch. Toxicol. 2010, 84, 183–190.

    CAS  Google Scholar 

  27. Marshall, J. S.; Warrington, R.; Watson, W.; Kim, H. L. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 2018, 14, 49.

    Google Scholar 

  28. Mariani, E.; Lisignoli, G.; Borzi, R. M.; Pulsatelli, L. Biomaterials: Foreign bodies or tuners for the immune response?. Int. J. Mol. Sci. 2019, 20, 636.

    CAS  Google Scholar 

  29. Sun, M. Y.; Gu, P. F.; Yang, Y.; Yu, L. D.; Jiang, Z. S.; Li, J. Q.; Le, Y. Y.; Chen, Y.; Ba, Q.; Wang, H. Mesoporous silica nanoparticles inflame tumors to overcome anti-PD-1 resistance through TLR4-NFκB axis. J. Immunother. Cancer 2021, 9, e002508.

    Google Scholar 

  30. Abbaraju, P. L.; Jambhrunkar, M.; Yang, Y. N.; Liu, Y.; Lu, Y.; Yu, C. Z. Asymmetric mesoporous silica nanoparticles as potent and safe immunoadjuvants provoke high immune responses. Chem. Commun. 2018, 54, 2020–2023.

    CAS  Google Scholar 

  31. Fahey, S.; Dempsey, E.; Long, A. The role of chemokines in acute and chronic hepatitis C infection. Cell. Mol. Immunol. 2014, 11, 25–40.

    CAS  Google Scholar 

  32. Tokunaga, R.; Zhang, W.; Naseem, M.; Puccini, A.; Berger, M. D.; Soni, S.; McSkane, M.; Baba, H.; Lenz, H. J. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation—A target for novel cancer therapy. Cancer Treat. Rev. 2018, 63, 40–47.

    CAS  Google Scholar 

  33. Qian, B. Z.; Li, J. F.; Zhang, H.; Kitamura, T.; Zhang, J. H.; Campion, L. R.; Kaiser, E. A.; Snyder, L. A.; Pollard, J. W. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011, 475, 222–225.

    CAS  Google Scholar 

  34. Aldinucci, D.; Colombatti, A. The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm. 2014, 2014, 292376.

    Google Scholar 

  35. Lang, K. S.; Georgiev, P.; Recher, M.; Navarini, A. A.; Bergthaler, A.; Heikenwalder, M.; Harris, N. L.; Junt, T.; Odermatt, B.; Clavien, P. A. et al. Immunoprivileged status of the liver is controlled by Tolllike receptor 3 signaling. J. Clin. Invest. 2006, 116, 2456–2463.

    CAS  Google Scholar 

  36. Zhou, J.; Peng, H.; Li, K.; Qu, K.; Wang, B. H.; Wu, Y. Z.; Ye, L. L.; Dong, Z. J.; Wei, H. M.; Sun, R. et al. Liver-resident NK cells control antiviral activity of hepatic T cells via the PD-1-PD-L1 axis. Immunity 2019, 50, 403–417.e4.

    CAS  Google Scholar 

  37. Gabrilovich, D. I.; Ostrand-Rosenberg, S.; Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 2012, 12, 253–268.

    CAS  Google Scholar 

  38. Wolf, Y.; Anderson, A. C.; Kuchroo, V. K. TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol. 2020, 20, 173–185.

    CAS  Google Scholar 

  39. Highfill, S. L.; Cui, Y. Z.; Giles, A. J.; Smith, J. P.; Zhang, H.; Morse, E.; Kaplan, R. N.; Mackall, C. L. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci. Transl. Med. 2014, 6, 237ra67.

    Google Scholar 

  40. Dammeijer, F.; van Gulijk, M.; Mulder, E. E.; Lukkes, M.; Klaase, L.; van den Bosch, T.; van Nimwegen, M.; Lau, S. P.; Latupeirissa, K.; Schetters, S. et al. The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell 2020, 38, 685–700.e8.

    CAS  Google Scholar 

  41. Nguyen, T. L.; Choi, Y.; Kim, J. Mesoporous silica as a versatile platform for cancer immunotherapy. Adv. Mater. 2019, 31, 1803953.

    Google Scholar 

  42. Li, Y.; Zhao, R. F.; Cheng, K. M.; Zhang, K. Y.; Wang, Y. Z.; Zhang, Y. L.; Li, Y. J.; Liu, G. N.; Xu, J. C.; Xu, J. Q. et al. Bacterial outer membrane vesicles presenting programmed death 1 for improved cancer immunotherapy via immune activation and checkpoint inhibition. ACS Nano 2020, 14, 16698–16711.

    CAS  Google Scholar 

  43. Makadia, H. K.; Siegel, S. J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011, 3, 1377–1397.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 32022043), the Suzhou Key Laboratory of Nanotechnology and Biomedicine, Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Project, and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H., Yang, Q., Sun, R. et al. Nanoparticle accumulation in liver may induce resistance to immune checkpoint blockade therapy. Nano Res. 16, 5237–5246 (2023). https://doi.org/10.1007/s12274-022-5142-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5142-4

Navigation