Skip to main content
Log in

Design of novel RGO/2D strip-like ZIF-8/DMAOP ternary hybrid structure towards high-efficiency microwave absorption, active and passive anti-corrosion, and synergistic antibacterial performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In order to meet the requirements of the marine environment for microwave absorption (MA) materials, we put forward the strategy of constructing multi-functional composite materials, which integrate microwave absorption, anti-corrosion, and antibacterial properties. Herein, graphene oxide (GO) was used as a template to induce the growth of zeolitic imidazolate framework-8 (ZIF-8), simultaneously as a two-dimensional (2D) nanocontainers to load corrosion inhibitors to achieve pH-responsive and self-healing properties. Finally, quaternary ammonium salt (dimethyl octadecyl(3-trimethoxylsilyl propyl) ammonium chloride (DMAOP)) and sodium ascorbate (VCNa) were introduced to achieve synergistic antibacterial activity and the reduction of GO. The 2D strip-like structure of ZIF-8 was due to the confined growth induced by the electrostatic attraction between ZIF-8 and GO sheets. The as-obtained reduced GO (RGO)/ZIF-8/DMAOP5 exhibited excellent microwave absorption (MA) properties, with a minimum reflection loss (RL) value of −47.08 dB at 12.73 GHz when the thickness was 2.8 mm. Moreover, the effective absorption bandwidth reached 6.84 GHz. After soaking in 3.5% NaCl solution for 35 days, the RGO/ZIF-8/DMAOP5−0.7% coating still achieved an impedance value of 4.585 × 107 Ω·cm2 and a protective efficiency of 99.994%, providing superior anti-corrosion properties. In addition, fantastic antibacterial activity was obtained, with the antibacterial rates of RGO/ZIF-8/DMAOP10 reaching 99.39% and 100% against Escherichia coli and Staphylococcus aureus. This work could open new avenues towards the development of a new generation of multifunctional MA materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, B.; Song, J. Z.; Wang, B.; Feng, Y. Z.; Liu, C. T.; Shen, C. Y. Robust double-layered ANF/MXene-PEDOT: PSS Janus films with excellent multi-source driven heating and electromagnetic interference shielding properties. Nano Res. 2022, 15, 9520–9530.

    Article  ADS  CAS  Google Scholar 

  2. Luo, S. L.; Xiang, T. T.; Dong, J. W.; Su, F. M.; Ji, Y. X.; Liu, C. T.; Feng, Y. Z. A double crosslinking MXene/cellulose nanofiber layered film for improving mechanical properties and stable electromagnetic interference shielding performance. J. Mater. Sci. Technol. 2022, 129, 127–134.

    Article  CAS  Google Scholar 

  3. Liang, C. B.; Zhang, W.; Liu, C. L.; He, J.; Xiang, Y.; Han, M. J.; Tong, Z. W.; Liu, Y. Q. Multifunctional phase change textiles with electromagnetic interference shielding and multiple thermal response characteristics. Chem. Eng. J. 2023, 471, 144500.

    Article  CAS  Google Scholar 

  4. Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

    Article  CAS  Google Scholar 

  5. Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

    Article  CAS  Google Scholar 

  6. Zhao, K. Y.; Luo, C. L.; Sun, C.; Huang, M. L.; Wang, M. Construction of heterogeneous interfaces on Ti3AlC2 micro-particles via surface dotting liquid metal to enhance electromagnetic wave absorption performance. Compos. Part A Appl. Sci. Manuf. 2023, 173, 107640.

    Article  CAS  Google Scholar 

  7. Wang, Y.; Gao, Y. N.; Yue, T. N.; Chen, X. D.; Che, R. C.; Wang, M. Liquid metal coated copper micro-particles to construct core–shell structure and multiple heterojunctions for high-efficiency microwave absorption. J. Colloid Interface Sci. 2022, 607, 210–218.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Zhang, Y. L.; Wang, X. X.; Cao, M. S. Confinedly implanted NiFe2O4−rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 2018, 11, 1426–1436.

    Article  CAS  Google Scholar 

  9. Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

    Article  ADS  CAS  Google Scholar 

  10. Sun, C.; Zhao, K. Y.; Huang, M. L.; Luo, C. L.; Chen, X. D.; Wu, H. J.; Wang, M. Heterointerface construction for permalloy microparticles through the surface modification of bilayer metallic organic frameworks: Toward microwave absorption enhancement. J. Colloid Interface Sci. 2023, 644, 454–465.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Ruan, K. P.; Gu, J. W. Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules 2022, 55, 4134–4145.

    Article  ADS  CAS  Google Scholar 

  12. He, J.; Han, M. J.; Wen, K.; Liu, C. L.; Zhang, W.; Liu, Y. Q.; Su, X. G.; Zhang, C. R.; Liang, C. B. Absorption-dominated electromagnetic interference shielding assembled composites based on modular design with infrared camouflage and response switching. Compos. Sci. Technol. 2023, 231, 109799.

    Article  CAS  Google Scholar 

  13. Yang, D.; Tao, J. R.; Yang, Y.; He, Q. M.; Wang, M. Robust microwave absorption in silver-cobalt hollow microspheres with heterointerfaces and electric–magnetic synergism: Towards achieving lightweight and absorption-type microwave shielding composites. J. Mater. Sci. Technol. 2023, 138, 245–255.

    Article  CAS  Google Scholar 

  14. Chen, T. L.; Wang, B. B.; Qi, Z. H.; Guo, Z. H.; Tian, Y. R.; Meng, F. B. Coatings comprised of graphene oxide decorated with helical polypyrrole nanofibers for microwave absorption and corrosion protection. ACS Appl. Nano Mater. 2022, 5, 9780–9791.

    Article  CAS  Google Scholar 

  15. Ren, H. S.; Li, T.; Wang, H. G.; Guo, Z. H.; Chen, T. L.; Meng, F. B. Two birds with one stone: Superhelical chiral polypyrrole towards high-performance electromagnetic wave absorption and corrosion protection. Chem. Eng. J. 2022, 427, 131582.

    Article  CAS  Google Scholar 

  16. Jiang, L.; Dong, Y. M.; Yuan, Y.; Zhou, X.; Liu, Y. R.; Meng, X. K. Recent advances of metal-organic frameworks in corrosion protection: From synthesis to applications. Chem. Eng. J. 2022, 430, 132823.

    Article  CAS  Google Scholar 

  17. Keshmiri, N.; Najmi, P.; Ramezanzadeh, M.; Ramezanzadeh, B. Designing an eco-friendly lanthanide-based metal organic framework (MOF) assembled graphene-oxide with superior active anti-corrosion performance in epoxy composite. J. Cleaner Prod. 2021, 319, 128732.

    Article  CAS  Google Scholar 

  18. Zhang, C.; Hong, S.; Liu, M. D.; Yu, W. Y.; Zhang, M. K.; Zhang, L.; Zeng, X.; Zhang, X. Z. pH-sensitive MOF integrated with glucose oxidase for glucose-responsive insulin delivery. J. Control. Release 2020, 320, 159–167.

    Article  CAS  PubMed  Google Scholar 

  19. Ramezanzadeh, M.; Ramezanzadeh, B.; Mahdavian, M.; Bahlakeh, G. Development of metal-organic framework (MOF) decorated graphene oxide nanoplatforms for anti-corrosion epoxy coatings. Carbon 2020, 161, 231–251.

    Article  CAS  Google Scholar 

  20. Yang, M.; Zhang, J.; Wei, Y. H.; Zhang, J.; Tao, C. M. Recent advances in metal-organic framework-based materials for anti-Staphylococcus aureus infection. Nano Res. 2022, 15, 6220–6242.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meng, F. B.; Chen, Y.; Liu, W. H.; Zhang, L. K.; Deng, W. T.; Zhao, Z. C. Multifunctional RGO-based films with “brick-slurry” structure: High-efficiency electromagnetic shielding performance, high strength and excellent environmental adaptability. Carbon 2022, 200, 156–165.

    Article  CAS  Google Scholar 

  22. Jiang, Z. Y.; Si, H. X.; Li, Y.; Li, D.; Chen, H. H.; Gong, C. H.; Zhang, J. W. Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano Res. 2022, 15, 8546–8554.

    Article  ADS  CAS  Google Scholar 

  23. Zhong, F.; He, Y.; Wang, P. Q.; Chen, C. L.; Wu, Y. Q. Novel pH-responsive self-healing anti-corrosion coating with high barrier and corrosion inhibitor loading based on reduced graphene oxide loaded zeolite imidazole framework. Colloids Surf. A Physicochem. Eng. Asp. 2022, 642, 128641.

    Article  CAS  Google Scholar 

  24. Ma, L. W.; Wang, J. K.; Zhang, D. W.; Huang, Y.; Huang, L. Y.; Wang, P. J.; Qian, H. C.; Li, X. G.; Terryn, H. A.; Mol, J. M. C. Dual-action self-healing protective coatings with photothermal responsive corrosion inhibitor nanocontainers. Chem. Eng. J. 2021, 404, 127118.

    Article  CAS  Google Scholar 

  25. Li, J.; Tao, Z. L.; Cui, J. C.; Shen, S. L.; Qiu, H. X. Facile fabrication of dual functional graphene oxide microcapsules carrying corrosion inhibitor and encapsulating self-healing agent. Polymers 2022, 14, 4067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

    Article  ADS  MathSciNet  Google Scholar 

  27. Enkovaara, J.; Rostgaard, C.; Mortensen, J. J.; Chen, J.; Dułak, M.; Ferrighi, L.; Gavnholt, J.; Glinsvad, C.; Haikola, V.; Hansen, H. A. et al. Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 2010, 22, 253202.

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 1996, 54, 1703–1710.

    Article  ADS  CAS  Google Scholar 

  29. Gibbs, J. W.; Wilson, E. B.; Thornton, P. The scientific papers of J. Willard Gibbs: Vol. I. Thermodynamics, elementary principles in statistical mechanics and vector analysis. Am. J. Phys. 1962, 30, 313–314.

    Article  ADS  Google Scholar 

  30. Wulff, G. On the question of speed of growth and dissolution of crystal surfaces. Z. Krystallogr. Mineral. 1901, 34, 449–530.

    CAS  Google Scholar 

  31. Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1045–1097.

    Article  ADS  CAS  Google Scholar 

  32. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  ADS  MathSciNet  Google Scholar 

  33. Li, H.; Qiang, Y. J.; Zhao, W. J.; Zhang, S. T. 2-Mercaptobenzimidazole-inbuilt metal-organic-frameworks modified graphene oxide towards intelligent and excellent anti-corrosion coating. Corros. Sci. 2021, 191, 109715.

    Article  CAS  Google Scholar 

  34. Wang, S.; Zhang, S. Q. Study on the structure activity relationship of ZIF-8 synthesis and thermal stability. J. Inorg. Organomet. Polym. Mater. 2017, 27, 1317–1322.

    Article  CAS  Google Scholar 

  35. Karimi, V.; Khataee, A.; Vatanpour, V.; Safarpour, M. High-flux PVDF mixed matrix membranes embedded with size-controlled ZIF-8 nanoparticles. Sep. Purif. Technol. 2019, 229, 115838.

    Article  CAS  Google Scholar 

  36. Nabipour, H.; Sadr, M. H.; Bardajee, G. R. Synthesis and characterization of nanoscale zeolitic imidazolate frameworks with ciprofloxacin and their applications as antimicrobial agents. New J. Chem. 2017, 41, 7364–7370.

    Article  CAS  Google Scholar 

  37. Zhang, H. F.; Zhao, M.; Yang, Y.; Lin, Y. S. Hydrolysis and condensation of ZIF-8 in water. Microporous Mesoporous Mater. 2019, 288, 109568.

    Article  CAS  Google Scholar 

  38. Lyn, F. H.; Peng, T. C.; Ruzniza, M. Z.; Hanani, Z. A. N. Effect of oxidation degrees of graphene oxide (GO) on the structure and physical properties of chitosan/GO composite films. Food Packag. Shelf Life 2019, 21, 100373.

    Article  Google Scholar 

  39. Xiong, L. L.; Liu, J. H.; Yu, M.; Li, S. M. Improving the corrosion protection properties of PVB coating by using salicylaldehyde@ZIF-8/graphene oxide two-dimensional nanocomposites. Corros. Sci. 2019, 146, 70–79.

    Article  CAS  Google Scholar 

  40. Zarrin, H.; Fu, J.; Jiang, G. P.; Yoo, S.; Lenos, J.; Fowler, M.; Chen, Z. W. Quaternized graphene oxide nanocomposites as fast hydroxide conductors. ACS Nano 2015, 9, 2028–2037.

    Article  CAS  PubMed  Google Scholar 

  41. Liu, X. M.; Xu, H. L.; Xie, F. T.; Fasel, C.; Yin, X. W.; Riedel, R. Highly flexible and ultrathin Mo2C film via in-situ growth on graphene oxide for electromagnetic shielding application. Carbon 2020, 163, 254–264.

    Article  CAS  Google Scholar 

  42. Pan, H.; Xu, M. Z.; Qi, Q.; Liu, X. B. Facile preparation and excellent microwave absorption properties of an RGO/Co0.33Ni0.67 lightweight absorber. RSC Adv. 2017, 7, 43831–43838.

    Article  ADS  CAS  Google Scholar 

  43. Kolmykov, O.; Commenge, J. M.; Alem, H.; Girot, E.; Mozet, K.; Medjahdi, G.; Schneider, R. Microfluidic reactors for the size-controlled synthesis of ZIF-8 crystals in aqueous phase. Mater. Des. 2017, 122, 31–41.

    Article  CAS  Google Scholar 

  44. Bagchi, D.; Bhattacharya, A.; Dutta, T.; Nag, S.; Wulferding, D.; Lemmens, P.; Pal, S. K. Nano MOF entrapping hydrophobic photosensitizer for dual-stimuli-responsive unprecedented therapeutic action against drug-resistant bacteria. ACS Appl. Bio Mater. 2019, 2, 1772–1780.

    Article  CAS  PubMed  Google Scholar 

  45. Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters and sample orientation. Phys. Rev. B 2009, 79, 205433.

    Article  ADS  Google Scholar 

  46. Zhang, H. F.; Zhao, M.; Lin, Y. S. Stability of ZIF-8 in water under ambient conditions. Microporous Mesoporous Mater. 2019, 279, 201–210.

    Article  CAS  Google Scholar 

  47. Yu, C.; Kim, Y. J.; Kim, J.; Eum, K. ZIF-L to ZIF-8 transformation: Morphology and structure controls. Nanomaterials 2022, 12, 4224.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu, G. H.; Jiang, Z. Y.; Cao, K. T.; Nair, S.; Cheng, X. X.; Zhao, J.; Gomaa, H.; Wu, H.; Pan, F. S. Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. J. Membr. Sci. 2017, 523, 185–196.

    Article  CAS  Google Scholar 

  49. Li, X.; Li, Z. H.; Lu, L.; Huang, L. M.; Xiang, L.; Shen, J.; Liu, S. Y.; Xiao, D. R. The solvent induced inter-dimensional phase transformations of cobalt zeolitic-imidazolate frameworks. Chem.—Eur. J. 2017, 23, 10638–10643.

    Article  CAS  PubMed  Google Scholar 

  50. Kida, K.; Okita, M.; Fujita, K.; Tanaka, S.; Miyake, Y. Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm 2013, 15, 1794–1801.

    Article  CAS  Google Scholar 

  51. Zhang, L.; Zheng, B.; Gao, Y.; Wang, L. L.; Wang, J. L.; Duan, X. B. Confined water vapor in ZIF-8 nanopores. ACS Omega 2022, 7, 64–69.

    Article  CAS  PubMed  Google Scholar 

  52. Zhi, D. D.; Li, T.; Qi, Z. H.; Li, J. Z.; Tian, Y. R.; Deng, W. T.; Meng, F. B. Core–shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation. Chem. Eng. J. 2022, 433, 134496.

    Article  CAS  Google Scholar 

  53. Liu, Q.; Tang, L.; Li, J. Z.; Chen, Y.; Xu, Z. K.; Li, J. T.; Chen, X. Y.; Meng, F. B. Multifunctional aramid nanofibers reinforced RGO aerogels integrated with high-efficiency microwave absorption, sound absorption and heat insulation performance. J. Mater. Sci. Technol. 2022, 130, 166–175.

    Article  CAS  Google Scholar 

  54. Tian, Y. R.; Zhi, D. D.; Li, T.; Li, J. Z.; Li, J. T.; Xu, Z. K.; Kang, W.; Meng, F. B. Graphene-based aerogel microspheres with annual ring-like structures for broadband electromagnetic attenuation. Chem. Eng. J. 2023, 464, 142644.

    Article  CAS  Google Scholar 

  55. Cole, K. S.; Cole, R. H. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 1941, 9, 341–351.

    Article  ADS  CAS  Google Scholar 

  56. Su, L.; Ma, J. X.; Zhang, F. Z.; Fan, Y. C.; Luo, W.; Wang, L. J.; Jiang, W.; Yang, J. P. Achieving effective broadband microwave absorption with Fe3O4@C supraparticles. J. Materiomics 2021, 7, 80–88.

    Article  Google Scholar 

  57. Liu, P. B.; Gao, S.; Wang, Y.; Huang, Y.; Wang, Y.; Luo, J. H. Core–shell CoNi@graphitic carbon decorated on B,N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation. ACS Appl. Mater. Interfaces 2019, 11, 25624–25635.

    Article  CAS  PubMed  Google Scholar 

  58. Gao, S.; Yang, S. H.; Wang, H. Y.; Wang, G. S.; Yin, P. G.; Zhang, X. J. CoNi alloy with tunable magnetism encapsulated by N-doped carbon nanosheets toward high-performance microwave attenuation. Compos. B Eng. 2021, 215, 108781.

    Article  CAS  Google Scholar 

  59. Xu, X. F.; Shi, S. H.; Tang, Y. L.; Wang, G. Z.; Zhou, M. F.; Zhao, G. Q.; Zhou, X. C.; Lin, S. W.; Meng, F. B. Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv. Sci. 2021, 8, 2002658.

    Article  CAS  Google Scholar 

  60. Zhao, Y.; Jiang, F.; Chen, Y. Q.; Hu, J. M. Coatings embedded with GO/MOFs nanocontainers having both active and passive protecting properties. Corros. Sci. 2020, 168, 108563.

    Article  CAS  Google Scholar 

  61. Qiu, S. H.; Li, W.; Zheng, W. R.; Zhao, H. C.; Wang, L. P. Synergistic effect of polypyrrole-intercalated graphene for enhanced corrosion protection of aqueous coating in 3.5% NaCl solution. ACS Appl. Mater. Interfaces 2017, 9, 34294–34304.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, H. Y.; Cao, F.; Xu, H.; Tian, W.; Pan, Y.; Mahmood, N.; Jian, X. Plasma-enhanced interfacial engineering of FeSiAl@PUA@SiO2 hybrid for efficient microwave absorption and anti-corrosion. Nano Res. 2023, 16, 645–653.

    Article  ADS  CAS  Google Scholar 

  63. Son, G. C.; Hwang, D. K.; Jang, J.; Chee, S. S.; Cho, K.; Myoung, J. M.; Ham, M. H. Solution-processed highly adhesive graphene coatings for corrosion inhibition of metals. Nano Res. 2019, 12, 19–23.

    Article  CAS  Google Scholar 

  64. Lashgari, S. M.; Yari, H.; Mahdavian, M.; Ramezanzadeh, B.; Bahlakeh, G.; Ramezanzadeh, M. Unique 2-methylimidazole based inorganic building brick nano-particles (NPs) functionalized with 3-aminopropyltriethoxysilane with excellent controlled corrosion inhibitors delivery performance; experimental coupled with molecular/DFT-D simulations. J. Taiwan Inst. Chem. Eng. 2020, 117, 209–222.

    Article  CAS  Google Scholar 

  65. Pettinari, C.; Pettinari, R.; Di Nicola, C.; Tombesi, A.; Scuri, S.; Marchetti, F. Antimicrobial MOFs. Coord. Chem. Rev. 2021, 446, 214121.

    Article  CAS  Google Scholar 

  66. Karahan, H. E.; Wang, Y. L.; Li, W.; Liu, F.; Wang, L.; Sui, X.; Riaz, M. A.; Chen, Y. Antimicrobial graphene materials: The interplay of complex materials characteristics and competing mechanisms. Biomater. Sci. 2018, 6, 766–773.

    Article  CAS  PubMed  Google Scholar 

  67. Kanazawa, A.; Ikeda, T.; Endo, T. Polymeric phosphonium salts as a novel class of cationic biocides. VIII. Synergistic effect on antibacterial activity of polymeric phosphonium and ammonium salts. J. Appl. Polym. Sci. 1994, 53, 1245–1249.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51903213 and 5217130190), the Science and Technology Planning Project of Sichuan Province (Nos. 2023NSFSC1952 and 2022ZYD0028), the Central Government Guides Local Science and Technology Development Special Funds to freely explore basic research projects (No. 2021Szvup124), and the Fundamental Research Funds for the Central Universities (No. 2682021GF004). The authors would like to thank the Analytical and Testing Center of Southwest Jiaotong University for supporting the relative measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Qi or Fanbin Meng.

Electronic Supplementary Material

12274_2023_6168_MOESM1_ESM.pdf

Design of novel RGO/2D strip-like ZIF-8/DMAOP ternary hybrid structure towards high-efficiency microwave absorption, active and passive anti-corrosion, and synergistic antibacterial performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Tian, Y., Guo, Z. et al. Design of novel RGO/2D strip-like ZIF-8/DMAOP ternary hybrid structure towards high-efficiency microwave absorption, active and passive anti-corrosion, and synergistic antibacterial performance. Nano Res. 17, 913–926 (2024). https://doi.org/10.1007/s12274-023-6168-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6168-y

Keywords

Navigation