Skip to main content
Log in

Carbon nanotube fibers with excellent mechanical and electrical properties by structural realigning and densification

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Floating catalysis chemical vapor deposition (FCCVD) direct spinning process is an attractive method for fabrication of carbon nanotube fibers (CNTFs). However, the intrinsic structural defects, such as entanglement of the constituent carbon nanotubes (CNTs) and inter-tube gaps within the FCCVD CNTFs, hinder the enhancement of mechanical/electrical properties and the realization of practical applications of CNTFs. Therefore, achieving a comprehensive reassembly of CNTFs with both high alignment and dense packing is particularly crucial. Herein, an efficient reinforcing strategy for FCCVD CNTFs was developed, involving chlorosulfonic acid-assisted wet stretching for CNT realigning and mechanical rolling for densification. To reveal the intrinsic relationship between the microstructure and the mechanical/electrical properties of CNTFs, the microstructure evolution of the CNTFs was characterized by cross-sectional scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS), polarized Raman spectroscopy and Brunauer–Emmett–Teller (BET) analysis. The results demonstrate that this strategy can improve the CNT alignment and eliminate the inter-tube voids in the CNTFs, which will lead to the decrease of mean distance between CNTs and increase of inter-tube contact area, resulting in the enhanced inter-tube van der Waals interactions. These microstructural evolutions are beneficial to the load transfer and electron transport between CNTs, and are the main cause of the significant enhancement of mechanical and electrical properties of the CNTFs. Specifically, the tensile strength, elastic modulus and electrical conductivity of the high-performance CNTFs are 7.67 GPa, 230 GPa and 4.36 × 106 S/m, respectively. It paves the way for further applications of CNTFs in high-end functional composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bulmer, J. S.; Kaniyoor, A.; Elliott, J. A. A meta-analysis of conductive and strong carbon nanotube materials. Adv. Mater. 2021, 33, 2008432.

    CAS  Google Scholar 

  2. Bai, Y. X.; Zhang, R. F.; Ye, X.; Zhu, Z. X.; Xie, H. H.; Shen, B. Y.; Cai, D. L.; Liu, B. F.; Zhang, C. X.; Jia, Z. et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 2018, 13, 589–595.

    CAS  Google Scholar 

  3. Wang, F.; Zhao, S. M.; Jiang, Q. Y.; Li, R.; Zhao, Y. L.; Huang, Y.; Wu, X. K.; Wang, B. S.; Zhang, R. F. Advanced functional carbon nanotube fibers from preparation to application. Cell Rep. Phys. Sci. 2022, 3, 100989.

    CAS  Google Scholar 

  4. Lu, W. B.; Zu, M.; Byun, J. H.; Kim, B. S.; Chou, T. W. State of the art of carbon nanotube fibers: Opportunities and challenges. Adv. Mater. 2012, 24, 1805–1833.

    CAS  Google Scholar 

  5. Xu, W.; Chen, Y.; Zhan, H.; Wang, J. N. High-strength carbon nanotube film from improving alignment and densification. Nano Lett. 2016, 16, 946–952.

    CAS  Google Scholar 

  6. Cho, Y. S.; Lee, J. W.; Kim, J.; Jung, Y.; Yang, S. J.; Park, C. R. Superstrong carbon nanotube yarns by developing multiscale bundle structures on the direct spin-line without post-treatment. Adv. Sci. 2022, 10, 2204250.

    Google Scholar 

  7. Zhang, S. L.; Nguyen, N.; Leonhardt, B.; Jolowsky, C.; Hao, A. Y.; Park, J. G.; Liang, R. Carbon-nanotube-based electrical conductors: Fabrication, optimization, and applications. Adv. Electron. Mater. 2019, 5, 1800811.

    Google Scholar 

  8. Zhang, S.; Chen, G. Q.; Qu, T. M.; Wei, J. Q.; Yan, Y. F.; Liu, Q.; Zhou, M. R.; Zhang, G.; Zhou, Z. X.; Gao, H. et al. A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity. Nano Res. 2021, 14, 2776–2782.

    CAS  Google Scholar 

  9. Qiao, J.; Wu, Y. L.; Zhu, C. F.; Dong, L. Z.; Wu, K. J.; Wang, Y. L.; Yang, W.; Li, M.; Di, J. T.; Li, Q. W. High-performance carbon nanotube/polyaniline artificial yarn muscles working in biocompatible environments. Nano Res. 2023, 16, 4143–4151.

    CAS  Google Scholar 

  10. Liu, D. P.; Yang, Z. P.; Zhang, Y. Y.; Wang, S.; Niu, Y. T.; Yang, J. F.; Yang, X. Y.; Fu, H. L.; Chen, L.; Yong, Z. Z. et al. Tailoring aligned and densified carbon nanotube@graphene coaxial yarn for 3D thermally conductive networks. Carbon 2023, 208, 322–329.

    CAS  Google Scholar 

  11. Gong, Q.; Yu, Y. Y.; Kang, L. X.; Zhang, M. C.; Zhang, Y. Y.; Wang, S. S.; Niu, Y. T.; Zhang, Y. Y.; Di, J. T.; Li, Q. W. et al. Modulus-tailorable, stretchable, and biocompatible carbonene fiber for adaptive neural electrode. Adv. Funct. Mater. 2022, 32, 2107360.

    CAS  Google Scholar 

  12. Lee, D.; Kim, S. G.; Hong, S.; Madrona, C.; Oh, Y.; Park, M.; Komatsu, N.; Taylor, L. W.; Chung, B.; Kim, J. et al. Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescence. Sci. Adv. 2022, 8, eabn0939.

    CAS  Google Scholar 

  13. Li, Q. W.; Zhang, X. F.; DePaula, R. F.; Zheng, L. X.; Zhao, Y. H.; Stan, L.; Holesinger, T. G.; Arendt, P. N.; Peterson, D. E.; Zhu, Y. T. Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Adv. Mater. 2006, 18, 3160–3163.

    CAS  Google Scholar 

  14. Kim, S. G.; Choi, G. M.; Jeong, H. D.; Lee, D.; Kim, S.; Ryu, K. H.; Lee, S.; Kim, J.; Hwang, J. Y.; Kim, N. D. et al. Hierarchical structure control in solution spinning for strong and multifunctional carbon nanotube fibers. Carbon 2022, 196, 59–69.

    CAS  Google Scholar 

  15. Zhao, Y.; Wei, J. Q.; Vajtai, R.; Ajayan, P. M.; Barrera, E. V. Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci. Rep. 2011, 1, 83.

    Google Scholar 

  16. Li, Y. L.; Kinloch, I. A.; Windle, A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 2004, 304, 276–278.

    CAS  Google Scholar 

  17. Janas, D.; Koziol, K. K. Carbon nanotube fibers and films: Synthesis, applications and perspectives of the direct-spinning method. Nanoscale 2016, 8, 19475–19490.

    CAS  Google Scholar 

  18. Smail, F.; Boies, A.; Windle, A. Direct spinning of CNT fibres: Past, present and future scale up. Carbon 2019, 152, 218–232.

    CAS  Google Scholar 

  19. Cho, H.; Lee, H.; Oh, E.; Lee, S. H.; Park, J.; Park, H. J.; Yoon, S. B.; Lee, C. H.; Kwak, G. H.; Lee, W. J. et al. Hierarchical structure of carbon nanotube fibers, and the change of structure during densification by wet stretching. Carbon 2018, 136, 409–416.

    CAS  Google Scholar 

  20. Han, B. S.; Xue, X.; Xu, Y. J.; Zhao, Z. Y.; Guo, E. Y.; Liu, C.; Luo, L. S.; Hou, H. L. Preparation of carbon nanotube film with high alignment and elevated density. Carbon 2017, 122, 496–503.

    CAS  Google Scholar 

  21. Liu, Q. L.; Li, M.; Gu, Y. Z.; Zhang, Y. Y.; Wang, S. K.; Li, Q. W.; Zhang, Z. G. Highly aligned dense carbon nanotube sheets induced by multiple stretching and pressing. Nanoscale 2014, 6, 4338–4344.

    CAS  Google Scholar 

  22. Lee, S. H.; Park, J.; Park, J. H.; Lee, D. M.; Lee, A.; Moon, S. Y.; Lee, S. Y.; Jeong, H. S.; Kim, S. M. Deep-injection floating-catalyst chemical vapor deposition to continuously synthesize carbon nanotubes with high aspect ratio and high crystallinity. Carbon 2021, 173, 901–909.

    CAS  Google Scholar 

  23. Weller, L.; Smail, F. R.; Elliott, J. A.; Windle, A. H.; Boies, A. M.; Hochgreb, S. Mapping the parameter space for direct-spun carbon nanotube aerogels. Carbon 2019, 146, 789–812.

    CAS  Google Scholar 

  24. Zhou, T.; Niu, Y. T.; Li, Z.; Li, H. F.; Yong, Z. Z.; Wu, K. J.; Zhang, Y. Y.; Li, Q. W. The synergetic relationship between the length and orientation of carbon nanotubes in direct spinning of high-strength carbon nanotube fibers. Mater. Design 2021, 203, 109557.

    CAS  Google Scholar 

  25. Wu, K. J.; Zhang, Y. Y.; Yong, Z. Z.; Li, Q. W. Continuous preparation and performance enhancement techniques of carbon nanotube fibers. Acta Phys. Chim. Sin. 2022, 38, 2106034.

    Google Scholar 

  26. Li, L. J.; Sun, T. Z.; Lu, S. C.; Chen, Z.; Xu, S. C.; Jian, M. Q.; Zhang, J. Graphene interlocking carbon nanotubes for high-strength and high-conductivity fibers. ACS Appl. Mater. Interfaces 2023, 15, 5701–5708.

    Google Scholar 

  27. Wang, J. N.; Luo, X. G.; Wu, T.; Chen, Y. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nat. Commun. 2014, 5, 3848.

    CAS  Google Scholar 

  28. Lee, J.; Lee, D. M.; Jung, Y.; Park, J.; Lee, H. S.; Kim, Y. K.; Park, C. R.; Jeong, H. S.; Kim, S. M. Direct spinning and densification method for high-performance carbon nanotube fibers. Nat. Commun. 2019, 10, 2962.

    Google Scholar 

  29. Oh, E.; Cho, H.; Kim, J.; Kim, J. E.; Yi, Y.; Choi, J.; Lee, H.; Im, Y. H.; Lee, K. H.; Lee, W. J. Super-strong carbon nanotube fibers achieved by engineering gas flow and postsynthesis treatment. ACS Appl. Mater. Interfaces 2020, 12, 13107–13115.

    CAS  Google Scholar 

  30. Han, Y.; Zhang, X. H.; Yu, X. P.; Zhao, J. N.; Li, S.; Liu, F.; Gao, P.; Zhang, Y. Y.; Zhao, T.; Li, Q. W. Bio-inspired aggregation control of carbon nanotubes for ultra-strong composites. Sci. Rep. 2015, 5, 11533.

    CAS  Google Scholar 

  31. Beese, A. M.; Wei, X. D.; Sarkar, S.; Ramachandramoorthy, R.; Roenbeck, M. R.; Moravsky, A.; Ford, M.; Yavari, F.; Keane, D. T.; Loutfy, R. O. et al. Key factors limiting carbon nanotube yarn strength: Exploring processing-structure-property relationships. ACS Nano 2014, 8, 11454–11466.

    CAS  Google Scholar 

  32. Alemán, B.; Reguero, V.; Mas, B.; Vilatela, J. J. Strong carbon nanotube fibers by drawing inspiration from polymer fiber spinning. ACS Nano 2015, 9, 7392–7398.

    Google Scholar 

  33. Jung, Y.; Cho, Y. S.; Lee, J. W.; Oh, J. Y.; Park, C. R. How can we make carbon nanotube yarn stronger. Compos. Sci. Technol. 2018, 166, 95–108.

    CAS  Google Scholar 

  34. Ericson, L. M.; Fan, H.; Peng, H. Q.; Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y. H.; Booker, R.; Vavro, J.; Guthy, C. et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science 2004, 305, 1447–1450.

    CAS  Google Scholar 

  35. Vilatela, J. J.; Elliott, J. A.; Windle, A. H. A model for the strength of yarn-like carbon nanotube fibers. ACS Nano 2011, 5, 1921–1927.

    CAS  Google Scholar 

  36. Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; Ter Waarbeek, R. F.; De Jong, J. J.; Hoogerwerf, R. E. et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 2013, 339, 182–186.

    CAS  Google Scholar 

  37. Song, L. M.; Zhang, F.; Chen, Y. Q.; Guan, L.; Zhu, Y. Q.; Chen, M.; Wang, H. L.; Putra, B. R.; Zhang, R.; Fan, B. B. Multifunctional SiC@SiO2 nanofiber aerogel with ultrabroadband electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 152.

    CAS  Google Scholar 

  38. Davies, R. J.; Riekel, C.; Koziol, K. K.; Vilatela, J. J.; Windle, A. H. Structural studies on carbon nanotube fibres by synchrotron radiation microdiffraction and microfluorescence. J. Appl. Cryst. 2009, 42, 1122–1128.

    CAS  Google Scholar 

  39. Li, S.; Park, J. G.; Liang, Z. Y.; Siegrist, T.; Liu, T.; Zhang, M.; Cheng, Q. F.; Wang, B.; Zhang, C. In situ characterization of structural changes and the fraction of aligned carbon nanotube networks produced by stretching. Carbon 2012, 50, 3859–3867.

    CAS  Google Scholar 

  40. Severino, J.; Yang, J. M.; Carlson, L.; Hicks, R. Progression of alignment in stretched CNT sheets determined by wide angle X-ray scattering. Carbon 2016, 100, 309–317.

    CAS  Google Scholar 

  41. Han, Y.; Li, S.; Chen, F. H.; Zhao, T. Multi-scale alignment construction for strong and conductive carbon nanotube/carbon composites. Mater. Today Commun. 2016, 6, 56–68.

    CAS  Google Scholar 

  42. Miaudet, P.; Badaire, S.; Maugey, M.; Derré, A.; Pichot, V.; Launois, P.; Poulin, P.; Zakri, C. Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment. Nano Lett. 2005, 5, 2212–2215.

    CAS  Google Scholar 

  43. Gommans, H. H.; Alldredge, J. W.; Tashiro, H.; Park, J.; Magnuson, J.; Rinzler, A. G. Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy. J. Appl. Phys. 2000, 88, 2509–2514.

    CAS  Google Scholar 

  44. Nesbitt, S.; Scott, W.; Macione, J.; Kotha, S. Collagen fibrils in skin orient in the direction of applied uniaxial load in proportion to stress while exhibiting differential strains around hair follicles. Materials 2015, 8, 1841–1857.

    Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support of the National Key Research and Development Program of China (No. 2022YFA1203303), the National Natural Science Foundation of China (Nos. 52162007, 52163032 and 52202032), the China Postdoctoral Science Foundation (No. 2022M712321), the Beijing Natural Science Foundation (No. 2222094), the Jiangsu Province Postdoctoral Research Funding Program (No. 2021K473C), and the Jiangxi Provincial Natural Science Foundation (Nos. 20224ACB204011 and 20202BAB204006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongyi Zhang, Zhenzhong Yong, Muqiang Jian or Qingwen Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Wang, B., Niu, Y. et al. Carbon nanotube fibers with excellent mechanical and electrical properties by structural realigning and densification. Nano Res. 16, 12762–12771 (2023). https://doi.org/10.1007/s12274-023-6157-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6157-1

Keywords

Navigation