Skip to main content

Advertisement

Log in

In-plane mechanical properties of carbon nanotube films fabricated by floating catalyst chemical vapor decomposition

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Large-scale carbon nanotube (CNT) films fabricated by floating catalyst chemical vapor deposition (FCCVD) are promising reinforcement materials for high performance composites. However, little research has been reported on the four independent in-plane engineering constants of FCCVD CNT films, which are essential for understanding and prediction of mechanical behavior of FCCVD CNT film-based structures. The tensile strength in CNT-oriented direction is 127 MPa and the tensile modulus in oriented and transverse directions are 3.0 and 0.3 GPa, respectively. These mechanical properties are mainly attributed to the as-grown CNT-to-CNT contacts in the films. The Poisson’s ratio in the oriented direction at 5 % strain is 0.75. A negative Poisson’s ratio of −0.99 is observed at 0.1 % strain in CNT-oriented direction. The in-plane shear modulus is 0.57 GPa, which is derived from the coordinate transformation between the on-axis and 45° off-axis compliance matrices. The in-situ scanning electron microscopy is adopted to observe the microstructure at different tensile strains. During the tensile testing, the reorientation of CNT bundles in CNT film is evaluated by numerical image processing and Raman spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  2. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  Google Scholar 

  3. Jung Y, Kim T, Park CR (2015) Effect of polymer infiltration on structure and properties of carbon nanotube yarns. Carbon 88:60–69

    Article  Google Scholar 

  4. Parikh K, Cattanach K, Rao R, Suh DS, Wu A, Manohar SK (2006) Flexible vapour sensors using single walled carbon nanotubes. Sens Actuators B 113:55–63

    Article  Google Scholar 

  5. Wang Y, Yang Z, Hou Z, Xu D, Wei L, Kong ESW et al (2010) Flexible gas sensors with assembled carbon nanotube thin films for DMMP vapor detection. Sens Actuators B Chem 150:708–714

    Article  Google Scholar 

  6. Li Z, Dharap P, Nagarajaiah S, Barrera EV, Kim JD (2004) Carbon nanotube film sensors. Adv Mater 16:640–643

    Article  Google Scholar 

  7. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44:1624–1652

    Article  Google Scholar 

  8. Rinzler A, Liu J, Dai H, Nikolaev P, Huffman C, Rodriguez-Macias F et al (1998) Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A Mater Sci Process 67:29–37

    Article  Google Scholar 

  9. Jiang Q, Li Y, Xie J, Sun J, Hui D, Qiu Y (2013) Plasma functionalization of bucky paper and its composite with phenylethynyl-terminated polyimide. Compos B Eng 45:1275–1281

    Article  Google Scholar 

  10. Jiang Q, Wang X, Zhu Y, Hui D, Qiu Y (2014) Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites. Compos B Eng 56:408–412

    Article  Google Scholar 

  11. Oh JY, Yang SJ, Park JY, Kim T, Lee K, Kim YS et al (2014) Easy preparation of self-assembled high-density buckypaper with enhanced mechanical properties. Nano Lett 15:190–197

    Article  Google Scholar 

  12. Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD et al (2005) Materials science: strong, transparent, multifunctional, carbon nanotube sheets. Science 309:1215–1219

    Article  Google Scholar 

  13. Liu W, Zhao H, Yong Z, Xu G, Wang X, Xu F et al (2013) Improving mechanical and electrical properties of oriented polymer-free multi-walled carbon nanotube paper by spraying while winding. Compos B Eng 53:342–346

    Article  Google Scholar 

  14. Zhang L, Zhang G, Liu C, Fan S (2012) High-density carbon nanotube buckypapers with superior transport and mechanical properties. Nano Lett 12:4848–4852

    Article  Google Scholar 

  15. Song L, Ci L, Lv L, Zhou Z, Yan X, Liu D et al (2004) Direct synthesis of a macroscale single-walled carbon nanotube non-woven material. Adv Mater 16:1529–1534

    Article  Google Scholar 

  16. Zhang X (2008) Hydroentangling: a novel approach to high-speed fabrication of carbon nanotube membranes. Adv Mater 20:4140–4144

    Google Scholar 

  17. Rigueur JL,Hasan SA, Mahajan SV, Dickerson JH (2010) Buckypaper fabrication by liberation of electrophoretically deposited carbon nanotubes. Carbon 48:4090–4099, 11

  18. Nasibulin AG, Kaskela A, Mustonen K, Anisimov AS, Ruiz V, Kivistö S et al (2011) Multifunctional free-standing single-walled carbon nanotube films. ACS Nano 5:3214–3221

    Article  Google Scholar 

  19. Liu L, Ma W, Zhang Z (2011) Macroscopic carbon nanotube assemblies: preparation, properties, and potential applications. Small 7:1504–1520

    Article  Google Scholar 

  20. Gay D (2014) Mechanical behavior of laminated materials Composite materials: design and applications, 3rd edn. CRC press, Boca Raton

    Google Scholar 

  21. Kaw AK (2010) Macromechanical analysis of a lamina. In: Mechanics of composite materials, 2nd edn. CRC press, Boca Raton

    Google Scholar 

  22. Blighe FM, Lyons PE, De S, Blau WJ, Coleman JN (2008) On the factors controlling the mechanical properties of nanotube films. Carbon 46:41–47

    Article  Google Scholar 

  23. Ting JM, Chang CC (2002) Multijunction carbon nanotube network. Appl Phys Lett 80:324–325

    Article  Google Scholar 

  24. Pourhabib A, Huang JZ, Wang K, Zhang C, Wang B, Ding Y (2015) Modulus prediction of buckypaper based on multi-fidelity analysis involving latent variables. IIE Trans 47:141–152

    Article  Google Scholar 

  25. Hwang J, Gommans H, Ugawa A, Tashiro H, Haggenmueller R, Winey KI et al (2000) Polarized spectroscopy of aligned single-wall carbon nanotubes. Phys Rev B 62:R13310

    Article  Google Scholar 

  26. Lu Q, Keskar G, Ciocan R, Rao R, Mathur RB, Rao AM et al (2006) Determination of carbon nanotube density by gradient sedimentation. J Phys Chem B 110:24371–24376

    Article  Google Scholar 

  27. Miao M (2011) Electrical conductivity of pure carbon nanotube yarns. Carbon 49:3755–3761

    Article  Google Scholar 

  28. Špitalský Z, Aggelopoulos C, Tsoukleri G, Tsakiroglou C, Parthenios J, Georga S et al (2009) The effect of oxidation treatment on the properties of multi-walled carbon nanotube thin films. Mater Sci Eng B 165:135–138

    Article  Google Scholar 

  29. Hahn HT, Tsai SW (1980) Off-axis stiffness of unidirectional composites in introduction to composite materials, vol 1. CRC Press, 109, p 65

    Google Scholar 

  30. Coleman JN, Blau WJ, Dalton AB, Muñoz E, Collins S, Kim BG et al (2003) Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Appl Phys Lett 82:1682–1684

    Article  Google Scholar 

  31. Wang S, Liang Z, Wang B, Zhang C (2007) High-strength and multifunctional macroscopic fabric of single-walled carbon nanotubes. Adv Mater 19:1257–1261

    Article  Google Scholar 

  32. Ma W, Song L, Yang R, Zhang T, Zhao Y, Sun L et al (2007) Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett 7:2307–2311

    Article  Google Scholar 

  33. Bradford PD, Wang X, Zhao H, Maria J-P, Jia Q, Zhu Y (2010) A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes. Compos Sci Technol 70:1980–1985

    Article  Google Scholar 

  34. Inoue Y, Suzuki Y, Minami Y, Muramatsu J, Shimamura Y, Suzuki K et al (2011) Anisotropic carbon nanotube papers fabricated from multiwalled carbon nanotube webs. Carbon 49:2437–2443

    Article  Google Scholar 

  35. Green MJ, Behabtu N, Pasquali M, Adams WW (2009) Nanotubes as polymers. Polymer 50:4979–4997

    Article  Google Scholar 

  36. Baughman RH, Stafström S, Cui C, Dantas SO (1998) Materials with negative compressibilities in one or more dimensions. Science 279:1522–1524

    Article  Google Scholar 

  37. Chen L, Liu C, Wang J, Zhang W, Hu C, Fan S (2009) Auxetic materials with large negative Poisson’s ratios based on highly oriented carbon nanotube structures. Appl Phys Lett 94:253111

    Article  Google Scholar 

  38. Ma YJ, Yao XF, Zheng QS, Yin YJ, Jiang DJ, Xu GH et al (2010) Carbon nanotube films change Poisson’s ratios from negative to positive. Appl Phys Lett 97:061909

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51303025), Shanghai Natural Science Foundation (Grant No. 12ZR1440500), Shanghai Science and Technology Committee (Grant No. 14YF1409600), and Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120075120016). This work was also funded by Donghua University and the Fundamental Research Funds for the Central Universities. Thanks to Prof. Qingwen Li in Suzhou, Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, for providing the FCCVD CNT material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Wei, B., Liu, W. et al. In-plane mechanical properties of carbon nanotube films fabricated by floating catalyst chemical vapor decomposition. J Mater Sci 50, 8166–8174 (2015). https://doi.org/10.1007/s10853-015-9395-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9395-0

Keywords

Navigation