Skip to main content
Log in

Investigation of MXene nanosheets based radio-frequency electronics by skin depth effect

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Various new conductive materials with exceptional properties are utilized for the preparation of electronic devices. Achieving ultrahigh conductivity is crucial to attain excellent electrical performance. However, there is a lack of systematic research on the impact of conductor material thickness on device performance. Here, we investigate the effect of conductor thickness on power transmission and radiation in radio-frequency (RF) and microwave electronics based on MXene nanosheets material transmission lines and antennas. The MXene transmission line with thickness above the skin depth exhibits a good transmission coefficient of approximately −3 dB, and the realized gain of MXene antennas exceeds 2 dBi. Additionally, the signal transmission strength of MXene antenna with thickness above the skin depth is higher than 5-µm MXene antenna approximately 5.5 dB. Transmission lines and antennas made from MXene materials with thickness above the skin depth exhibit stable and reliable performance, which has significant implications for obtaining high-performance RF and microwave electronics based on new conductive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, W. W.; Ni, H.; Ding, C. B.; Liu, L. L.; Fu, Q. F.; Lin, F. F.; Tian, F.; Yang, P.; Liu, S. J.; He, W. J. et al. 2D titanium carbide printed flexible ultrawideband monopole antenna for wireless communications. Nat. Commun. 2023, 14, 278.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Hussain, R. Shared-aperture slot-based sub-6-GHz and mm-wave IoT antenna for 5G applications. IEEE Internet Things J. 2021, 8, 10807–10814.

    Article  Google Scholar 

  3. Zhang, L.; Zhang, J. X.; He, Y. J.; Mao, C. X.; Li, W. T.; Wong, S. W.; Mei, P.; Gao, S. A single-layer 10–30 GHz reflectarray antenna for the internet of vehicles. IEEE Trans. Veh. Technol. 2022, 71, 1480–1490.

    Article  Google Scholar 

  4. Dorrah, A. H.; Eleftheriades, G. V. Experimental demonstration of peripherally-excited antenna arrays. Nat. Commun. 2021, 12, 6109.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Tian, X.; Lee, P. M.; Tan, Y. J.; Wu, T. L. Y.; Yao, H. C.; Zhang, M. Y.; Li, Z. P.; Ng, K. A.; Tee, B. C. K.; Ho, J. S. Wireless body sensor networks based on metamaterial textiles. Nat. Electron. 2019, 2, 243–251.

    Article  Google Scholar 

  6. Ibrahim, A. A.; Mohamed, H. A.; Abdelghany, M. A.; Tammam, E. Flexible and frequency reconfigurable CPW-fed monopole antenna with frequency selective surface for IoT applications. Sci. Rep. 2023, 13, 8409.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Hu, P. F.; Leung, K. W.; Luk, K. M.; Pan, Y. M.; Zheng, S. Y. Diversity glass antennas for Tri-band WiFi applications. Engineering 2023, 23, 157–169.

    Article  Google Scholar 

  8. Pei, R.; Leach, M. P.; Lim, E. G.; Wang, Z.; Song, C. Y.; Wang, J. C.; Zhang, W. Z.; Jiang, Z. Z.; Huang, Y. Wearable EBG-backed belt antenna for smart on-body applications. IEEE Trans. Industr. Inform. 2020, 16, 7177–7189.

    Article  Google Scholar 

  9. Baumbauer, C. L.; Anderson, M. G.; Ting, J.; Sreekumar, A.; Rabaey, J. M.; Arias, A. C.; Thielens, A. Printed, flexible, compact UHF-RFID sensor tags enabled by hybrid electronics. Sci. Rep. 2020, 10, 16543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lim, E. G.; Wang, J. C.; Juans, G.; Wang, Z.; Leach, M. P.; Lee, S.; Theera-Umpon, N. Design of wearable radio frequency identification antenna. Wireless Pers. Commun. 2018, 98, 3059–3070.

    Article  Google Scholar 

  11. I, C. L.; Han, S. F.; Bian, S. Energy-efficient 5G for a greener future. Nat. Electron. 2020, 3, 182–184.

    Article  Google Scholar 

  12. Asci, C.; Sadeqi, A.; Wang, W.; Rezaei Nejad, H.; Sonkusale, S. Design and implementation of magnetically-tunable quad-band filter utilizing split-ring resonators at microwave frequencies. Sci. Rep. 2020, 10, 1050.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Kaim, V.; Kanaujia, B. K.; Kumar, S.; Choi, H. C.; Kim, K. W.; Rambabu, K. Ultra-miniature circularly polarized CPW-fed implantable antenna design and its validation for biotelemetry applications. Sci. Rep. 2020, 10, 6795.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Ferrari, A. C.; Bonaccorso, F.; Fal’Ko, V.; Novoselov, K. S.; Roche, S.; Boggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598–4810.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Guna, V. K.; Murugesan, G.; Basavarajaiah, B. H.; Ilangovan, M.; Olivera, S.; Krishna, V.; Reddy, N. Plant-based completely biodegradable printed circuit boards. IEEE Trans. Electron Devices 2016, 63, 4893–4898.

    Article  CAS  ADS  Google Scholar 

  16. Awasthi, A. K.; Li, J. H.; Koh, L.; Ogunseitan, O. A. Circular economy and electronic waste. Nat. Electron. 2019, 2, 86–89.

    Article  Google Scholar 

  17. Song, R. G.; Jiang, S. Q.; Hu, Z. L.; Fan, C.; Li, P.; Ge, Q.; Mao, B. Y.; He, D. P. Ultra-high conductive graphene assembled film for millimeter wave electromagnetic protection. Sci. Bull. 2022, 67, 1122–1125.

    Article  CAS  Google Scholar 

  18. Song, R. G.; Wang, Z.; Zu, H. R.; Chen, Q.; Mao, B. Y.; Wu, Z. P.; He, D. P. Wideband and low sidelobe graphene antenna array for 5G applications. Sci. Bull. 2021, 66, 103–106.

    Article  Google Scholar 

  19. Shao, Y. Z.; Wei, L. S.; Wu, X. Y.; Jiang, C. M.; Yao, Y.; Peng, B.; Chen, H.; Huangfu, J. T.; Ying, Y. B.; Zhang, C. J. et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat. Commun. 2022, 13, 3223.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  20. Puchades, I.; Rossi, J. E.; Cress, C. D.; Naglich, E.; Landi, B. J. Carbon nanotube thin-film antennas. ACS Appl. Mater. Interfaces 2016, 8, 20986–20992.

    Article  CAS  PubMed  Google Scholar 

  21. Amram Bengio, E.; Senic, D.; Taylor, L. W.; Headrick, R. J.; King, M.; Chen, P. Y.; Little, C. A.; Ladbury, J.; Long, C. J.; Holloway, C. L. et al. Carbon nanotube thin film patch antennas for wireless communications. Appl. Phys. Lett. 2019, 114, 203102.

    Article  ADS  Google Scholar 

  22. Guan, H. J.; Song, R. G.; Tong, C.; Zhao, X.; Yang, Y. P.; He, D. P. Graphene assembled film based conformal sensor array for submillimeter crack location and direction detection. Appl. Phys. Express 2023, 16, 015512.

    Article  ADS  Google Scholar 

  23. Zhang, J. W.; Wang, Y. C.; Song, R. G.; Kou, Z. K.; He, D. P. Highly flexible graphene-film-based rectenna for wireless energy harvesting. Energy Environ. Mater., in press, DOI: https://doi.org/10.1002/eem2.12548.

  24. Zu, H. R.; Wu, B.; Zhang, Y. H.; Zhao, Y. T.; Song, R. G.; He, D. P. Circularly polarized wearable antenna with low profile and low specific absorption rate using highly conductive graphene film. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2354–2358.

    Article  ADS  Google Scholar 

  25. Li, Y.; Tian, X.; Gao, S. P.; Jing, L.; Li, K. R.; Yang, H. T.; Fu, F. F.; Lee, J. Y.; Guo, Y. X.; Ho, J. S. et al. Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 2020, 30, 1907451.

    Article  CAS  Google Scholar 

  26. Han, M. K.; Liu, Y. Q.; Rakhmanov, R.; Israel, C.; Tajin, M. A. S.; Friedman, G.; Volman, V.; Hoorfar, A.; Dandekar, K. R.; Gogotsi, Y. Solution-processed Ti3C2Tx MXene antennas for radio-frequency communication. Adv. Mater. 2021, 33, e2003225.

    Article  PubMed  Google Scholar 

  27. Song, R. G.; Wang, Q. L.; Mao, B. Y.; Wang, Z.; Tang, D. L.; Zhang, B.; Zhang, J. W.; Liu, C. G.; He, D. P.; Wu, Z. et al. Flexible graphite films with high conductivity for radio-frequency antennas. Carbon 2018, 130, 164–169.

    Article  CAS  Google Scholar 

  28. Pan, K. W.; Fan, Y. Y.; Leng, T.; Li, J. S.; Xin, Z. Y.; Zhang, J. W.; Hao, L.; Gallop, J.; Novoselov, K. S.; Hu, Z. R. Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications. Nat. Commun. 2018, 9, 5197.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  29. Hui, Y. Y.; Zu, H. R.; Song, R. G.; Fu, H. Q.; Luo, K. L.; Tian, C.; Wu, B.; Huang, G. L.; Kou, Z. K.; Cheng, X. et al. Graphene-assembled film-based reconfigurable filtering antenna with enhanced corrosion-resistance. Crystals 2023, 13, 747.

    Article  CAS  Google Scholar 

  30. Jiang, S. Q.; Song, R. G.; Hu, Z. L.; Xin, Y. T.; Huang, G. L.; He, D. P. Millimeter wave phased array antenna based on highly conductive graphene-assembled film for 5G applications. Carbon 2022, 196, 493–498.

    Article  CAS  Google Scholar 

  31. Song, R. G.; Mao, B. Y.; Wang, Z.; Hui, Y. Y.; Zhang, N.; Fang, R.; Zhang, J. W.; Wu, Y. E.; Ge, Q.; Novoselov, K. S. et al. Comparison of copper and graphene-assembled films in 5G wireless communication and THz electromagnetic-interference shielding. Proc. Natl. Acad. Sci. USA 2023, 120, e2209807120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Szeftel, J.; Sandeau, N.; Khater, A. Study of the skin effect in superconducting materials. Phys. Lett. A 2017, 381, 1525–1528.

    Article  CAS  ADS  Google Scholar 

  33. Zhao, M. Q.; Trainor, N.; Ren, C. E.; Torelli, M.; Anasori, B.; Gogotsi, Y. Scalable manufacturing of large and flexible sheets of MXene/graphene heterostructures. Adv. Mater. Technol. 2019, 4, 1800639.

    Article  Google Scholar 

  34. Song, R. G.; Zhao, X.; Wang, Z.; Fu, H. Q.; Han, K. K.; Qian, W.; Wang, S. Y.; Shen, J.; Mao, B. Y.; He, D. P. Sandwiched graphene clad laminate: A binder-free flexible printed circuit board for 5G antenna application. Adv. Eng. Mater. 2020, 22, 2000451.

    Article  Google Scholar 

  35. Si, Y. F.; Jin, H. H.; Zhang, Q.; Xu, D. W.; Xu, R. X.; Ding, A. X.; Liu, D. Roll-to-roll processable MXene-rGO-PVA composite films with enhanced mechanical properties and environmental stability for electromagnetic interference shielding. Ceram. Int. 2022, 48, 24898–24905.

    Article  CAS  Google Scholar 

  36. Wang, H.; Cui, Z.; He, S. A.; Zhu, J. Q.; Luo, W.; Liu, Q.; Zou, R. J. Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium-sulfur batteries. Nano-Micro Lett. 2022, 14, 189.

    Article  CAS  ADS  Google Scholar 

  37. Hao, S. W.; Fu, Q. J.; Meng, L.; Xu, F.; Yang, J. A biomimetic laminated strategy enabled strain-interference free and durable flexible thermistor electronics. Nat. Commun. 2022, 13, 6472.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51672204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daping He or Yongliang Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, R., Si, Y., Qian, W. et al. Investigation of MXene nanosheets based radio-frequency electronics by skin depth effect. Nano Res. 17, 3061–3067 (2024). https://doi.org/10.1007/s12274-023-6127-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6127-7

Keywords

Navigation