Skip to main content
Log in

Epitaxial growth of borophene on graphene surface towards efficient and broadband photodetector

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In-situ integration of multiple materials with well-defined interfaces as heterostructures is of great interest due to their unique properties and potential for new device functionality. Because of its polymorphism and diverse bonding geometries, borophene is a promising candidate for two-dimensional heterostructures, but suitable synthesis conditions have limited its potential applications. Toward this end, we demonstrate the vertical borophene and graphene heterostructures which form by epitaxial growth of borophene onto multilayer graphene on Cu substrates via chemical vapor deposition, where hydrogen and NaBH4 are respectively used as the carrier gas and the boron source. The lattice structure of the as-synthesized borophene well coincides with the predicted α′-boron sheet. The borophene-based photodetector shows an excellent broadband photoresponse from the ultraviolet (255 nm) to the infrared (940 nm) wavelengths, with enhanced responsivity compared to pristine borophene or graphene photodetectors. This work informs emerging efforts to integrate borophene into nanoelectronic applications for both fundamental investigations and technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaneti, Y. V.; Benu, D. P.; Xu, X. T.; Yuliarto, B.; Yamauchi, Y.; Golberg, D. Borophene: Two-dimensional boron monolayer: Synthesis, properties, and potential applications. Chem. Rev. 2022, 122, 1000–1051.

    Article  CAS  PubMed  Google Scholar 

  2. Hou, C.; Tai, G. A.; Wu, Z. H.; Hao, J. Q. Borophene current status, challenges and opportunities. ChemPlusChem 2020, 85, 2186–2196.

    Article  CAS  PubMed  Google Scholar 

  3. Mannix, A. J.; Zhang, Z. H.; Guisinger, N. P.; Yakobson, B. I.; Hersam, M. C. Borophene as a prototype for synthetic 2D materials development. Nat. Nanotechnol. 2018, 13, 444–450.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Zhang, Z. H.; Penev, E. S.; Yakobson, B. I. Two-dimensional boron: Structures, properties and applications. Chem. Soc. Rev. 2017, 46, 6746–6763.

    Article  CAS  PubMed  Google Scholar 

  5. Ranjan, P.; Sahu, T. K.; Bhushan, R.; Yamijala, S. S. R. K. C.; Late, D. J.; Kumar, P.; Vinu, A. Freestanding borophene and its hybrids. Adv. Mater. 2019, 31, 1900353.

    Article  Google Scholar 

  6. Zhang, Z. H.; Yang, Y.; Gao, G. Y.; Yakobson, B. I. Two-dimensional boron monolayers mediated by metal substrates. Angew. Chem., Int. Ed. 2015, 54, 13022–13026.

    Article  CAS  Google Scholar 

  7. Liu, Y. Y.; Penev, E. S.; Yakobson, B. I. Probing the synthesis of two-dimensional boron by first-principles computations. Angew. Chem., Int. Ed. 2013, 52, 3156–3159.

    Article  CAS  Google Scholar 

  8. Tai, G. A.; Hu, T. S.; Zhou, Y. G.; Wang, X. F.; Kong, J. Z.; Zeng, T.; You, Y. C.; Wang, Q. Synthesis of atomically thin boron films on copper foils. Angew. Chem., Int. Ed. 2015, 54, 15473–15477.

    Article  CAS  Google Scholar 

  9. Ruan, Q. Y.; Wang, L. Q.; Bets, K. V.; Yakobson, B. I. Step-edge epitaxy for borophene growth on insulators. ACS Nano 2021, 15, 18347–18353.

    Article  CAS  PubMed  Google Scholar 

  10. Liu, X. L.; Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 2019, 4, 669–684.

    Article  ADS  Google Scholar 

  11. Jiao, Y. L.; Ma, F. X.; Bell, J.; Bilic, A.; Du, A. J. Two-dimensional boron hydride sheets: High stability, massless Dirac fermions, and excellent mechanical properties. Angew. Chem., Int. Ed. 2016, 55, 10292–10295.

    Article  CAS  Google Scholar 

  12. Sun, X.; Liu, X. F.; Yin, J.; Yu, J.; Li, Y.; Hang, Y.; Zhou, X. C.; Yu, M. L.; Li, J. D.; Tai, G. A. et al. Two-dimensional boron crystals: Structural stability, tunable properties, fabrications and applications. Adv. Funct. Mater. 2017, 27, 1603300.

    Article  Google Scholar 

  13. Gao, M.; Li, Q. Z.; Yan, X. W.; Wang, J. Prediction of phonon-mediated superconductivity in borophene. Phys. Rev. B 2017, 95, 024505.

    Article  ADS  Google Scholar 

  14. Li, D. F.; Gao, J. F.; Cheng, P.; He, J.; Yin, Y.; Hu, Y. X.; Chen, L.; Cheng, Y.; Zhao, J. J. 2D boron sheets: Structure, growth, and electronic and thermal transport properties. Adv. Funct. Mater. 2020, 30, 1904349.

    Article  CAS  Google Scholar 

  15. Lian, C.; Hu, S. Q.; Zhang, J.; Cheng, C.; Yuan, Z.; Gao, S. W.; Meng, S. Integrated plasmonics: Broadband Dirac plasmons in borophene. Phys. Rev. Lett. 2020, 125, 116802.

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Wu, Z. H.; Tai, G. A.; Liu, R. S.; Hou, C.; Shao, W.; Liang, X. C.; Wu, Z. T. Van der Waals epitaxial growth of borophene on a mica substrate toward a high-performance photodetector. ACS Appl. Mater. Interfaces 2021, 13, 31808–31815.

    Article  CAS  PubMed  Google Scholar 

  17. Wu, Z. H.; Tai, G. A.; Liu, R. S.; Shao, W.; Hou, C.; Liang, X. C. Synthesis of borophene on quartz towards hydroelectric generators. J. Mater. Chem. A 2022, 10, 8218–8226.

    Article  CAS  Google Scholar 

  18. Hou, C.; Tai, G. A.; Hao, J. Q.; Sheng, L. H.; Liu, B.; Wu, Z. T. Ultrastable crystalline semiconducting hydrogenated borophene. Angew. Chem., Int. Ed. 2020, 59, 10819–10825.

    Article  CAS  Google Scholar 

  19. Hou, C.; Tai, G. A.; Liu, Y.; Wu, Z. T.; Wu, Z. H.; Liang, X. C. Ultrasensitive humidity sensing and the multifunctional applications of borophene–MoS2 heterostructures. J. Mater. Chem. A 2021, 9, 13100–13108.

    Article  CAS  Google Scholar 

  20. Hou, C.; Tai, G. A.; Liu, Y.; Liu, X. Borophene gas sensor. Nano Res. 2022, 15, 2537–2544.

    Article  CAS  ADS  Google Scholar 

  21. Hou, C.; Tai, G. A.; Liu, B.; Wu, Z. H.; Yin, Y. H. Borophene–graphene heterostructure: Preparation and ultrasensitive humidity sensing. Nano Res. 2021, 14, 2337–2344.

    Article  CAS  ADS  Google Scholar 

  22. Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 564–569.

    Article  Google Scholar 

  23. Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Wu, Z. H.; Tai, G. A.; Shao, W.; Wang, R.; Hou, C. Experimental realization of quasicubic boron sheets. Nanoscale 2020, 12, 3787–3794.

    Article  CAS  PubMed  Google Scholar 

  25. Wu, R. T.; Drozdov, I. K.; Eltinge, S.; Zahl, P.; Ismail-Beigi, S.; Božović, I.; Gozar, A. Large-area single-crystal sheets of borophene on Cu (111) surfaces. Nat. Nanotechnol. 2019, 14, 44–49.

    Article  PubMed  ADS  Google Scholar 

  26. Wu, R. T.; Eltinge, S.; Drozdov, I. K.; Gozar, A.; Zahl, P.; Sadowski, J. T.; Ismail-Beigi, S.; Božović, I. Micrometre-scale single-crystalline borophene on a square-lattice Cu (100) surface. Nat. Chem. 2022, 14, 377–383.

    Article  CAS  PubMed  Google Scholar 

  27. Kiraly, B.; Liu, X. L.; Wang, L. Q.; Zhang, Z. H.; Mannix, A. J.; Fisher, B. L.; Yakobson, B. I.; Hersam, M. C.; Guisinger, N. P. Borophene synthesis on Au (111). ACS Nano 2019, 13, 3816–3822.

    Article  CAS  PubMed  Google Scholar 

  28. Vinogradov, N. A.; Lyalin, A.; Taketsugu, T.; Vinogradov, A. S.; Preobrajenski, A. Single-phase borophene on Ir (111): Formation, structure, and decoupling from the support. ACS Nano 2019, 13, 14511–14518.

    Article  CAS  PubMed  Google Scholar 

  29. Li, W. B.; Kong, L. J.; Chen, C. Y.; Gou, J.; Sheng, S. X.; Zhang, W. F.; Li, H.; Chen, L.; Cheng, P.; Wu, K. H. Experimental realization of honeycomb borophene. Sci. Bull. 2018, 63, 282–286.

    Article  CAS  Google Scholar 

  30. Li, T. W.; Nie, G.; Sun, Q. Highly sensitive tuning of lattice thermal conductivity of graphene-like borophene by fluorination and chlorination. Nano Res 2020, 13, 1171–1177.

    Article  Google Scholar 

  31. Solís-Fernández, P.; Bissett, M.; Ago, H. Synthesis, structure and applications of graphene-based 2D heterostructures. Chem. Soc. Rev. 2017, 46, 4572–4613.

    Article  PubMed  Google Scholar 

  32. Liu, X. L.; Hersam, M. C. Borophene-graphene heterostructures. Sci. Adv. 2019, 5, eaax6444.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Kochaev, A.; Maslov, M.; Katin, K.; Efimov, V.; Efimova, I. Stabilization of porous borophene-graphene vertical heterostructure using unilateral hydrogenation. Mater. Today Nano 2022, 20, 100247.

    Article  CAS  Google Scholar 

  34. Liu, Y.; Huang, Y.; Duan, X. F. Van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323–333.

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Kochaev, A.; Meftakhutdinov, R.; Sibatov, R.; Katin, K.; Maslov, M.; Efimov, V. Enhanced properties of covalently coupled borophene-graphene layers through fluorination and hydrogenation. Appl. Surf. Sci. 2021, 562, 150150.

    Article  CAS  Google Scholar 

  36. Shen, J. L.; Yang, Z.; Wang, Y. T.; Xu, L. C.; Liu, R. P.; Liu, X. G. The gas sensing performance of borophene/MoS2 heterostructure. Appl. Surf. Sci. 2020, 504, 144412.

    Article  CAS  Google Scholar 

  37. Mogulkoc, A.; Mogulkoc, Y.; Kecik, D.; Durgun, E. The effect of strain and functionalization on the optical properties of borophene. Phys. Chem. Chem. Phys. 2018, 20, 21043–21050.

    Article  CAS  PubMed  Google Scholar 

  38. Xu, L. C.; Du, A. J.; Kou, L. Z. Hydrogenated borophene as a stable two-dimensional Dirac material with an ultrahigh Fermi velocity. Phys. Chem. Chem. Phys. 2016, 18, 27284–27289.

    Article  CAS  PubMed  Google Scholar 

  39. Miwa, J. A.; Dendzik, M.; Grønborg, S. S.; Bianchi, M.; Lauritsen, J. V.; Hofmann, P.; Ulstrup, S. Van der Waals epitaxy of two-dimensional MoS2–graphene heterostructures in ultrahigh vacuum. ACS Nano 2015, 9, 6502–6510.

    Article  CAS  PubMed  Google Scholar 

  40. Shih, C. J.; Wang, Q. H.; Son, Y.; Jin, Z.; Blankschtein, D.; Strano, M. S. Tuning on–off current ratio and field-effect mobility in a MoS2–graphene heterostructure via Schottky barrier modulation. ACS Nano 2014, 8, 5790–5798.

    Article  CAS  PubMed  Google Scholar 

  41. Peng, Y. C.; Chou, S. L.; Lo, J. I.; Lin, M. Y.; Lu, H. C.; Cheng, B. M.; Ogilvie, J. F. Infrared and ultraviolet spectra of diborane(6): B2H6 and B2D6. J. Phys. Chem. A 2016, 120, 5562–5572.

    Article  CAS  PubMed  Google Scholar 

  42. Zhou, W.; Zeng, J. W.; Li, X. F.; Xu, J.; Shi, Y.; Ren, W.; Miao, F.; Wang, B. G.; Xing, D. Y. Ultraviolet Raman spectra of double-resonant modes of graphene. Carbon 2016, 101, 235–238.

    Article  CAS  Google Scholar 

  43. Werheit, H.; Filipov, V.; Kuhlmann, U.; Schwarz, U.; Armbrüster, M.; Leithe-Jasper, A.; Tanaka, T.; Higashi, I.; Lundström, T.; Gurin, V. N. et al. Raman effect in icosahedral boron-rich solids. Sci. Technol. Adv. Mater. 2010, 11, 023001.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Parakhonskiy, G.; Vtech, V.; Dubrovinskaia, N.; Caracas, R.; Dubrovinsky, L. Raman spectroscopy investigation of alpha boron at elevated pressures and temperatures. Solid State Commun. 2013, 154, 34–39.

    Article  CAS  ADS  Google Scholar 

  45. Hess, N. J.; Bowden, M. E.; Parvanov, V. M.; Mundy, C.; Kathmann, S. M.; Schenter, G. K.; Autrey, T. Spectroscopic studies of the phase transition in ammonia borane: Raman spectroscopy of single crystal NH3BH3 as a function of temperature from 88 to 330 K. J. Chem. Phys. 2008, 128, 034508.

    Article  PubMed  ADS  Google Scholar 

  46. Tassev, V. L. Heteroepitaxy, an amazing contribution of crystal growth to the world of optics and electronics. Crystals 2017, 7, 178.

    Article  Google Scholar 

  47. Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Ma, D. T.; Wang, R.; Zhao, J. L.; Chen, Q. Y.; Wu, L. M.; Li, D. L.; Su, L. M.; Jiang, X. T.; Luo, Z. Q.; Ge, Y. Q. et al. A self-powered photodetector based on two-dimensional boron nanosheets. Nanoscale 2020, 12, 5313–5323.

    Article  CAS  PubMed  Google Scholar 

  49. An, X. H.; Liu, F. Z.; Jung, Y. J.; Kar, S. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 2013, 13, 909–916.

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Mao, J.; Yu, Y. Q.; Wang, L.; Zhang, X. J.; Wang, Y. M.; Shao, Z. B.; Jie, J. S. Ultrafast, broadband photodetector based on MoSe2/Silicon heterojunction with vertically standing layered structure using graphene as transparent electrode. Adv. Sci. 2016, 3, 1600018.

    Article  Google Scholar 

  51. Lan, C. Y.; Li, C.; Wang, S.; He, T. Y.; Jiao, T. P.; Wei, D. P.; Jing, W. K.; Li, L. Y.; Liu, Y. Zener tunneling and photoresponse of a WS2/Si van der Waals heterojunction. ACS Appl. Mater. Interfaces 2016, 8, 18375–18382.

    Article  CAS  PubMed  Google Scholar 

  52. Chowdhury, R. K.; Maiti, R.; Ghorai, A.; Midya, A.; Ray, S. K. Novel silicon compatible p-WS2 2D/3D heterojunction devices exhibiting broadband photoresponse and superior detectivity. Nanoscale 2016, 8, 13429–13436.

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z. Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Zhang, Y.; Yu, Y. Q.; Mi, L. F.; Wang, H.; Zhu, Z. F.; Wu, Q. Y.; Zhang, Y. G.; Jiang, Y. In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible-near-infrared photodetectors. Small 2016, 12, 1062–1071.

    Article  CAS  PubMed  Google Scholar 

  55. Kim, H. S.; Kumar, M. D.; Patel, M.; Kim, J.; Cho, B.; Kim, D. H. High-performing MoS2-embedded Si photodetector. Mater. Sci. Semicond. Process. 2017, 71, 35–41.

    Article  CAS  Google Scholar 

  56. Wu, D.; Guo, C. G.; Zeng, L. H.; Ren, X. Y.; Shi, Z. F.; Wen, L.; Chen, Q.; Zhang, M.; Li, X. J.; Shan, C. X. et al. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light Sci. Appl. 2023, 12, 5.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  57. Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van der Waals epitaxial growth of Mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 2020, 32, 2004412.

    Article  Google Scholar 

  58. Wu, D.; Guo, J. W.; Wang, C. Q.; Ren, X. Y.; Chen, Y. S.; Lin, P.; Zeng, L. H.; Shi, Z. F.; Li, X. J.; Shan, C. X. et al. Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano 2021, 15, 10119–10129.

    Article  CAS  PubMed  Google Scholar 

  59. Pan, S. Q.; Wu, S. E.; Hei, J. J.; Zhou, Z. W.; Zeng, L. H.; Xing, Y. K.; Lin, P.; Shi, Z. F.; Tian, Y. T.; Li, X. J. et al. Light trapping enhanced broadband photodetection and imaging based on MoSe2/pyramid Si vdW heterojunction. Nano Res. 2023, 16, 10552–10558.

    Article  CAS  ADS  Google Scholar 

  60. Xie, Z. J.; Xing, C. Y.; Huang, W. C.; Fan, T. J.; Li, Z. J.; Zhao, J. L.; Xiang, Y. J.; Guo, Z. N.; Li, J. Q.; Yang, Z. G. et al. Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 2018, 28, 1705833.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61774085), the Natural Science Foundation of Jiangsu Province (No. BK20201300), the Fundamental Research Funds for the Central Universities (No. NP2022401), the Fund of Prospective Layout of Scientific Research for NUAA (Nanjing University of Aeronautics and Astronautics) (No. ILA22009), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoan Tai.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Shifan, C., Wu, Z. et al. Epitaxial growth of borophene on graphene surface towards efficient and broadband photodetector. Nano Res. 17, 3053–3060 (2024). https://doi.org/10.1007/s12274-023-6109-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6109-9

Keywords

Navigation