Skip to main content
Log in

Mesenchymal stem cell-derived exosomes: versatile nanomaterials for skin wound treatment

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Accumulating studies reveal that mesenchymal stem cells (MSCs) promote skin wound healing mainly through the paracrine effects. Exosomes, one of the crucial paracrine mediators in wound healing, are cell-derived nanosized membranous vesicles containing diverse bioactive cargoes. With the potent ability of modulating skin cell behaviors, MSC-derived exosomes (MSC-Exos) are regarded as a promising nanomaterial for regenerative wound therapy. Under hostile conditions, MSC-Exos are efficient in protecting skin cells from severe damage and restoring their function. According to recent studies, MSC-Exos possess remarkable pro-healing effects in a variety of skin wounds, typically resulting in increased wound closure, inhibited scar tissue formation, and better restoration of skin function. To further enhance the therapeutic potential of MSC-Exos, the development of applicable pretreatment strategies and the optimization of exosome delivery are under intensive investigation. Herein, we summarize current research progress of MSC-Exos for skin wound treatment, with an emphasis on the biological effects of these nanovesicles, the repair mechanisms, and future challenges in clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, Y. Z.; Gou, M.; Da, L. C.; Zhang, W. Q.; Xie, H. Q. Mesenchymal stem cells for chronic wound healing: Current status of preclinical and clinical studies. Tissue Eng. Part B Rev. 2020, 26, 555–570.

    Article  CAS  PubMed  Google Scholar 

  2. Singer, A. J. Healing mechanisms in cutaneous wounds: Tipping the balance. Tissue Eng. Part B Rev. 2022, 28, 1151–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Falanga, V.; Isseroff, R. R.; Soulika, A. M.; Romanelli, M.; Margolis, D.; Kapp, S.; Granick, M.; Harding, K. Chronic wounds. Nat. Rev. Dis. Primers 2022, 8, 50.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Finnerty, C. C.; Jeschke, M. G.; Branski, L. K.; Barret, J. P.; Dziewulski, P.; Herndon, D. N. Hypertrophic scarring: The greatest unmet challenge after burn injury. Lancet 2016, 388, 1427–1436.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Takeo, M.; Lee, W.; Ito, M. Wound healing and skin regeneration. Cold Spring Harb. Perspect. Med. 2015, 5, a023267.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Andrzejewska, A.; Lukomska, B.; Janowski, M. Concise review: Mesenchymal stem cells: From roots to boost. Stem Cells 2019, 37, 855–864.

    Article  PubMed  Google Scholar 

  7. Soliman, H.; Theret, M.; Scott, W.; Hill, L.; Underhill, T. M.; Hinz, B.; Rossi, F. M. V. Multipotent stromal cells: One name, multiple identities. Cell Stem Cell. 2021, 28, 1690–1707.

    Article  CAS  PubMed  Google Scholar 

  8. Huang, Y. Z.; Xie, H. Q.; Silini, A.; Parolini, O.; Zhang, Y.; Deng, L.; Huang, Y. C. Mesenchymal Stem/Progenitor Cells Derived from Articular Cartilage, Synovial Membrane and Synovial Fluid for Cartilage Regeneration: Current Status and Future Perspectives. Stem Cell Rev. Rep. 2017, 13, 575–586.

    Article  CAS  PubMed  Google Scholar 

  9. Marofi, F.; Alexandrovna, K. I.; Margiana, R.; Bahramali, M.; Suksatan, W.; Abdelbasset, W. K.; Chupradit, S.; Nasimi, M.; Maashi, M. S. MSCs and their exosomes: A rapidly evolving approach in the context of cutaneous wounds therapy. Stem Cell Res. Ther. 2021, 12, 597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kalluri, R.; LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao, G. F.; Liu, F. L.; Liu, Z. N.; Zuo, K. Y.; Wang, B.; Zhang, Y. Y.; Han, X.; Lian, A. B.; Wang, Y.; Liu, M. S. et al. MSC-derived exosomes attenuate cell death through suppressing AIF nucleus translocation and enhance cutaneous wound healing.. Stem Cell Res. Ther. 2020, 11, 174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, B.; Wang, M.; Gong, A. H.; Zhang, X.; Wu, X. D.; Zhu, Y. H.; Shi, H.; Wu, L. J.; Zhu, W.; Qian, H. et al. HucMSC-Exosome Mediated-Wnt4 Signaling Is Required for Cutaneous Wound Healing. Stem Cells. 2015, 33, 2158–2168.

    Article  CAS  PubMed  Google Scholar 

  13. Dalirfardouei, R.; Jamialahmadi, K.; Jafarian, A. H.; Mahdipour, E. Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model. J. Tissue Eng. Regen. Med. 2019, 13, 555–568.

    Article  CAS  PubMed  Google Scholar 

  14. Cao, G. X.; Chen, B.; Zhang, X.; Chen, H. Y. Human adipose-derived mesenchymal stem cells-derived exosomal microRNA-19b promotes the healing of skin wounds through modulation of the CCL1/TGF-β signaling axis. Clin. Cosmet. Investig. Dermatol. 2020, 13, 957–971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, K. Y.; Cheng, K. Stem cell-derived exosome versus stem cell therapy.. Nat. Rev. Bioeng 2023, in press, DOI: https://doi.org/10.1038/s44222-023-00064-2.

  16. Casiraghi, F.; Remuzzi, G.; Abbate, M.; Perico, N. Multipotent mesenchymal stromal cell therapy and risk of malignancies. Stem Cell Rev. Rep. 2013, 9, 65–79.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou, C. C.; Zhang, B. Y.; Yang, Y. Q.; Jiang, Q.; Li, T. Y.; Gong, J.; Tang, H. B.; Zhang, Q. Stem cell-derived exosomes: Emerging therapeutic opportunities for wound healing. Stem Cell Res. Ther. 2023, 14, 107.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yu, B.; Zhang, X. M.; Li, X. R. Exosomes derived from mesenchymal stem cells. Int. J. Mol. Sci. 2014, 15, 4142–4157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoang, D. H.; Nguyen, T. D.; Nguyen, H. P.; Nguyen, X. H.; Do, P. T. X.; Dang, V. D.; Dam, P. T. M.; Bui, H. T. H.; Trinh, M. Q.; Vu, D. M. et al. Differential wound healing capacity of mesenchymal stem cell-derived exosomes originated from bone marrow, adipose tissue and umbilical cord under serum- and xeno-free condition. Front. Mol. Biosci. 2020, 7, 119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, B.; Yeo, R. W. Y.; Lai, R. C.; Sim, E. W. K.; Chin, K. C.; Lim, S. K. Mesenchymal stromal cell exosome-enhanced regulatory T-cell production through an antigen-presenting cell-mediated pathway. Cytotherapy 2018, 20, 687–696.

    Article  CAS  PubMed  Google Scholar 

  21. Nikfarjam, S.; Rezaie, J.; Zolbanin, N. M.; Jafari, R. Mesenchymal stem cell derived-exosomes: A modern approach in translational medicine. J. Transl. Med. 2020, 18, 449.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kim, J. Y.; Rhim, W. K.; Yoo, Y. I.; Kim, D. S.; Ko, K. W.; Heo, Y.; Park, C. G.; Han, D. K. Defined MSC exosome with high yield and purity to improve regenerative activity. J. Tissue Eng. 2021, 12, 20417314211008626.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cheng, H.; Fang, H.; Xu, R. D.; Fu, M. Q.; Chen, L.; Song, X. Y.; Qian, J. Y.; Zou, Y. Z.; Ma, J. Y.; Ge, J. B. Development of a rinsing separation method for exosome isolation and comparison to conventional methods. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 5074–5083.

    CAS  PubMed  Google Scholar 

  24. Wang, Z. G.; He, Z. Y.; Liang, S.; Yang, Q.; Cheng, P.; Chen, A. M. Comprehensive proteomic analysis of exosomes derived from human bone marrow, adipose tissue, and umbilical cord mesenchymal stem cells. Stem Cell Res. Ther. 2020, 11, 511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Anderson, J. D.; Johansson, H. J.; Graham, C. S.; Vesterlund, M.; Pham, M. T.; Bramlett, C. S.; Montgomery, E. N.; Mellema, M. S.; Bardini, R. L.; Contreras, Z. et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-KappaB signaling. Stem Cells 2016, 34, 601–613.

    Article  CAS  PubMed  Google Scholar 

  26. Bobis-Wozowicz, S.; Kmiotek, K.; Kania, K.; Karnas, E.; Labedz-Maslowska, A.; Sekula, M.; Kedracka-Krok, S.; Kolcz, J.; Boruczkowski, D.; Madeja, Z. et al. Diverse impact of xeno-free conditions on biological and regenerative properties of hUC-MSCs and their extracellular vesicles. J. Mol. Med. 2017, 95, 205–220.

    Article  CAS  PubMed  Google Scholar 

  27. Kim, J. Y.; Rhim, W. K.; Seo, H. J.; Lee, J. Y.; Park, C. G.; Han, D. K. Comparative analysis of MSC-derived exosomes depending on cell culture media for regenerative bioactivity. Tissue Eng. Regen. Med. 2021, 18, 355–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Furlani, D.; Ugurlucan, M.; Ong, L.; Bieback, K.; Pittermann, E.; Westien, I.; Wang, W. W.; Yerebakan, C.; Li, W. Z.; Gaebel, R. et al. Is the intravascular administration of mesenchymal stem cells safe: Mesenchymal stem cells and intravital microscopy. Microvasc. Res. 2009, 77, 370–376.

    Article  CAS  PubMed  Google Scholar 

  29. Janowski, M.; Lyczek, A.; Engels, C.; Xu, J. D.; Lukomska, B.; Bulte, J. W.; Walczak, P. Cell size and velocity of injection are major determinants of the safety of intracarotid stem cell transplantation. J. Cereb. Blood Flow Metab. 2013, 33, 921–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang, Z. Y.; Shen, Y. L.; Pei, N.; Sun, A. J.; Xu, J. F.; Song, Y. N.; Huang, G. Y.; Sun, X. N.; Zhang, S. N.; Qin, Q. et al. The effect of nonuniform magnetic targeting of intracoronary-delivering mesenchymal stem cells on coronary embolisation. Biomaterials 2013, 34, 9905–9916.

    Article  CAS  PubMed  Google Scholar 

  31. Fiarresga, A.; Mata, M. F.; Cavaco-Gonçalves, S.; Selas, M.; Simões, I. N.; Oliveira, E.; Carrapiço, B.; Cardim, N.; Cabral, J. M. S.; Ferreira, R. C. et al. Intracoronary delivery of human mesenchymal/stromal stem cells: Insights from coronary microcirculation invasive assessment in a swine model. PLoS One 2015, 10, e0139870.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tolar, J.; Nauta, A. J.; Osborn, M. J.; Panoskaltsis Mortari, A.; McElmurry, R. T.; Bell, S.; Xia, L.; Zhou, N.; Riddle, M.; Schroeder, T. M. et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 2007, 25, 371–379.

    Article  CAS  PubMed  Google Scholar 

  33. Tasso, R.; Augello, A.; Carid’, M.; Postiglione, F.; Tibiletti, M. G.; Bernasconi, B.; Astigiano, S.; Fais, F.; Truini, M.; Cancedda, R. et al. Development of sarcomas in mice implanted with mesenchymal stem cells seeded onto bioscaffolds. Carcinogenesis 2009, 30, 150–157.

    Article  CAS  PubMed  Google Scholar 

  34. Breitbach, M.; Bostani, T.; Roell, W.; Xia, Y.; Dewald, O.; Nygren, J. M.; Fries, J. W. U.; Tiemann, K.; Bohlen, H.; Hescheler, J. et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 2007, 110, 1362–1369.

    Article  CAS  PubMed  Google Scholar 

  35. Awad, H. A.; Boivin, G. P.; Dressler, M. R.; Smith, F. N. L.; Young, R. G.; Butler, D. L. Repair of patellar tendon injuries using a cell-collagen composite. J. Orthop. Res. 2003, 21, 420–431.

    Article  CAS  PubMed  Google Scholar 

  36. Kunter, U.; Rong, S.; Boor, P.; Eitner, F.; Müller-Newen, G.; Djuric, Z.; Van Roeyen, C. R.; Konieczny, A.; Ostendorf, T.; Villa, L. et al. Mesenchymal stem cells prevent progressive experimental renal failure but maldifferentiate into glomerular adipocytes. J. Am. Soc. Nephrol. 2007, 18, 1754–1764.

    Article  CAS  PubMed  Google Scholar 

  37. Whaley, D.; Damyar, K.; Witek, R. P.; Mendoza, A.; Alexander, M.; Lakey, J. R. Cryopreservation: An overview of principles and cell-specific considerations. Cell Transplant. 2021, 30, 963689721999617.

  38. Zhang, Y.; Bi, J. Y.; Huang, J. Y.; Tang, Y. N.; Du, S. Y.; Li, P. Y. Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int. J. Nanomedicine 2020, 15, 6917–6934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sokolova, V.; Ludwig, A. K.; Hornung, S.; Rotan, O.; Horn, P. A.; Epple, M.; Giebel, B. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf. B Biointerfaces 2011, 87, 146–150.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, B.; Gong, J. M.; He, L.; Khan, A.; Xiong, T.; Shen, H.; Li, Z. Y. Exosomes based advancements for application in medical aesthetics. Front. Bioeng. Biotechnol. 2022, 10, 1083640.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Maroto, R.; Zhao, Y. X.; Jamaluddin, M.; Popov, V. L.; Wang, H. W.; Kalubowilage, M.; Zhang, Y. Q.; Luisi, J.; Sun, H.; Culbertson, C. T. et al. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. J. Extracell. Vesicles 2017, 6, 1359478.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wu, Y. T.; Deng, W. T.; KlinkeII, D. J. Exosomes: Improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst 2015, 140, 6631–6642.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Charoenviriyakul, C.; Takahashi, Y.; Nishikawa, M.; Takakura, Y. Preservation of exosomes at room temperature using lyophilization. Int. J. Pharm. 2018, 553, 1–7.

    Article  CAS  PubMed  Google Scholar 

  44. Wu, D.; Kang, L.; Tian, J. J.; Wu, Y. H.; Liu, J. Y.; Li, Z. Y.; Wu, X. D.; Huang, Y.; Gao, B.; Wang, H. et al. Exosomes derived from bone mesenchymal stem cells with the stimulation of Fe3O4 nanoparticles and static magnetic field enhance wound healing through upregulated miR-21-5p. Int. J. Nanomedicine 2020, 15, 7979–7993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fang, S.; Xu, C.; Zhang, Y. T.; Xue, C. Y.; Yang, C.; Bi, H. D.; Qian, X. J.; Wu, M. J.; Ji, K. H.; Zhao, Y. P. et al. Umbilical cord-derived mesenchymal stem cell-derived exosomal MicroRNAs suppress myofibroblast differentiation by inhibiting the transforming growth factor-β/SMAD2 pathway during wound healing. Stem Cells Transl. Med. 2016, 5, 1425–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, M.; Ke, Q. F.; Tao, S. C.; Guo, S. C.; Rui, B. Y.; Guo, Y. P. Fabrication of hydroxyapatite/chitosan composite hydrogels loaded with exosomes derived from miR-126-3p overexpressed synovial mesenchymal stem cells for diabetic chronic wound healing. J. Mater. Chem. B 2016, 4, 6830–6841.

    Article  CAS  PubMed  Google Scholar 

  47. Gao, S. Y.; Chen, T.; Hao, Y.; Zhang, F. F.; Tang, X. J.; Wang, D. L.; Wei, Z. R.; Qi, J. P. Exosomal miR-135a derived from human amnion mesenchymal stem cells promotes cutaneous wound healing in rats and fibroblast migration by directly inhibiting LATS2 expression. Stem Cell Res. Ther. 2020, 11, 56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, Y.; Zhang, J.; Shi, J. H.; Liu, K. T.; Wang, X. J.; Jia, Y. H.; He, T.; Shen, K.; Wang, Y. C.; Liu, J. Q. et al. Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis. Stem Cell Res. Ther. 2021, 12, 221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shabbir, A.; Cox, A.; Rodriguez-Menocal, L.; Salgado, M.; Van Badiavas, E. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev. 2015, 24, 1635–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, X.; Jiao, Y.; Pan, Y.; Zhang, L. X.; Gong, H. M.; Qi, Y. J.; Wang, M. Y.; Gong, H. P.; Shao, M. J.; Wang, X. L. et al. Fetal dermal mesenchymal stem cell-derived exosomes accelerate cutaneous wound healing by activating notch signaling. Stem Cells Int. 2019, 2019, 2402916.

    Article  PubMed  PubMed Central  Google Scholar 

  51. He, L.; Zhu, C.; Jia, J.; Hao, X. Y.; Yu, X. Y.; Liu, X. Y.; Shu, M. G. ADSC-Exos containing MALAT1 promotes wound healing by targeting miR-124 through activating Wnt/β-catenin pathway. Biosci. Rep. 2020, 40, BSR20192549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Qian, L.; Pi, L.; Fang, B. R.; Meng, X. X. Adipose mesenchymal stem cell-derived exosomes accelerate skin wound healing via the lncRNA H19/miR-19b/SOX9 axis. Lab. Invest. 2021, 101, 1254–1266.

    Article  CAS  PubMed  Google Scholar 

  53. Yang, C.; Luo, L.; Bai, X. Z.; Shen, K.; Liu, K. T.; Wang, J.; Hu, D. H. Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway. Arch. Biochem. Biophys. 2020, 681, 108259.

    Article  CAS  PubMed  Google Scholar 

  54. Xiu, C.; Zheng, H. N.; Jiang, M. F.; Li, J. X.; Zhou, Y. H.; Mu, L.; Liu, W. S. MSCs-derived miR-150-5p-expressing exosomes promote skin wound healing by activating PI3K/AKT pathway through PTEN. Int. J. Stem Cells 2022, 15, 359–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gong, M.; Yu, B.; Wang, J. C.; Wang, Y. G.; Liu, M.; Paul, C.; Millard, R. W.; Xiao, D. S.; Ashraf, M.; Xu, M. F. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget 2017, 8, 45200–45212.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Liang, X. L.; Zhang, L. N.; Wang, S. H.; Han, Q.; Zhao, R. C. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J. Cell Sci. 2016, 129, 2182–2189.

    Article  CAS  PubMed  Google Scholar 

  57. Pi, L.; Yang, L.; Fang, B. R.; Meng, X. X.; Qian, L. Exosomal microRNA-125a-3p from human adipose-derived mesenchymal stem cells promotes angiogenesis of wound healing through inhibiting PTEN. Mol. Cell Biochem. 2022, 477, 115–127.

    Article  CAS  PubMed  Google Scholar 

  58. Du, W.; Zhang, K. Y.; Zhang, S. Q.; Wang, R.; Nie, Y.; Tao, H. Y.; Han, Z. B.; Liang, L.; Wang, D.; Liu, J. F. et al. Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer. Biomaterials 2017, 133, 70–81.

    Article  CAS  PubMed  Google Scholar 

  59. Xu, M. Q.; Su, X. D.; Xiao, X.; Yu, H. L.; Li, X. X.; Keating, A.; Wang, S. H.; Zhao, R. C. Hydrogen peroxide-induced senescence reduces the wound healing-promoting effects of mesenchymal stem cell-derived exosomes partially via miR-146a. Aging Dis. 2021, 12, 102–115.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yang, K.; Li, D.; Wang, M. T.; Xu, Z. L.; Chen, X.; Liu, Q.; Sun, W. J.; Li, J. X.; Gong, Y. Q.; Liu, D. et al. Exposure to blue light stimulates the proangiogenic capability of exosomes derived from human umbilical cord mesenchymal stem cells. Stem Cell Res. Ther. 2019, 10, 358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shi, R. F.; Jin, Y. P.; Hu, W. W.; Lian, W. S.; Cao, C. W.; Han, S. L.; Zhao, S. M.; Yuan, H. X.; Yang, X. H.; Shi, J. H. et al. Exosomes derived from mmu_circ_0000250-modified adipose-derived mesenchymal stem cells promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1-mediated autophagy. Am. J. Physiol. Cell Physiol. 2020, 318, C848–C856.

    Article  CAS  PubMed  Google Scholar 

  62. Liu, J. W.; Yan, Z. X.; Yang, F. J.; Huang, Y.; Yu, Y.; Zhou, L. P.; Sun, Z. X.; Cui, D. W.; Yan, Y. M. Exosomes derived from human umbilical cord mesenchymal stem cells accelerate cutaneous wound healing by enhancing angiogenesis through delivering angiopoietin-2. Stem Cell Rev. Rep. 2021, 17, 305–317.

    Article  CAS  PubMed  Google Scholar 

  63. Chen, C. Y.; Rao, S. S.; Ren, L.; Hu, X. K.; Tan, Y. J.; Hu, Y.; Luo, J.; Liu, Y. W.; Yin, H.; Huang, J. et al. Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis. Theranostics 2018, 8, 1607–1623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, X.; Liu, L. Y.; Yang, J.; Yu, Y. H.; Chai, J. K.; Wang, L. Y.; Ma, L.; Yin, H. N. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation. EBioMedicine 2016, 8, 72–82.

    Article  PubMed  PubMed Central  Google Scholar 

  65. He, X. N.; Dong, Z. W.; Cao, Y. N.; Wang, H.; Liu, S. Y.; Liao, L.; Jin, Y.; Yuan, L.; Li, B. MSC-derived exosome promotes M2 polarization and enhances cutaneous wound healing. Stem Cells Int. 2019, 2019, 7132708.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ti, D.; Hao, H. J.; Tong, C.; Liu, J. J.; Dong, L.; Zheng, J. X.; Zhao, Y. L.; Liu, H. L.; Fu, X. B.; Han, W. D. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J. Transl. Med. 2015, 13, 308.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Moretti, L.; Stalfort, J.; Barker, T. H.; Abebayehu, D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J. Biol. Chem. 2022, 298, 101530.

    Article  CAS  PubMed  Google Scholar 

  68. Talbott, H. E.; Mascharak, S.; Griffin, M.; Wan, D. C.; Longaker, M. T. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 2022, 29, 1161–1180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tooi, M.; Komaki, M.; Morioka, C.; Honda, I.; Iwasaki, K.; Yokoyama, N.; Ayame, H.; Izumi, Y.; Morita, I. Placenta mesenchymal stem cell derived exosomes confer plasticity on fibroblasts. J. Cell. Biochem. 2016, 117, 1658–1670.

    Article  CAS  PubMed  Google Scholar 

  70. Choi, E. W.; Seo, M. K.; Woo, E. Y.; Kim, S. H.; Park, E. J.; Kim, S. Exosomes from human adipose-derived stem cells promote proliferation and migration of skin fibroblasts. Exp. Dermatol. 2018, 27, 1170–1172.

    Article  CAS  PubMed  Google Scholar 

  71. Zhao, B.; Zhang, Y. J.; Han, S. C.; Zhang, W.; Zhou, Q.; Guan, H.; Liu, J. Q.; Shi, J. H.; Su, L. L.; Hu, D. H. Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation. J. Mol. Histol. 2017, 48, 121–132.

    Article  CAS  PubMed  Google Scholar 

  72. Zhao, B.; Zhang, X. L.; Zhang, Y. L.; Lu, Y. J.; Zhang, W. T.; Lu, S. T.; Fu, Y.; Zhou, Y.; Zhang, J.; Zhang, J. Human exosomes accelerate cutaneous wound healing by promoting collagen synthesis in a diabetic mouse model. Stem Cells Dev. 2021, 30, 922–933.

    Article  CAS  PubMed  Google Scholar 

  73. Kim, Y. J.; Yoo, S. M.; Park, H. H.; Lim, H. J.; Kim, Y. L.; Lee, S.; Seo, K. W.; Kang, K. S. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin. Biochem. Biophys. Res. Commun. 2017, 493, 1102–1108.

    Article  CAS  PubMed  Google Scholar 

  74. Wang, L.; Hu, L.; Zhou, X.; Xiong, Z. H.; Zhang, C. G.; Shehada, H. M. A.; Hu, B.; Song, J. L.; Chen, L. L. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Sci. Rep. 2017, 7, 13321.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  75. Zhang, W.; Bai, X. Z.; Zhao, B.; Li, Y.; Zhang, Y. J.; Li, Z. Z.; Wang, X. J.; Luo, L.; Han, F.; Zhang, J. L. et al. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway. Exp. Cell Res. 2018, 370, 333–342.

    Article  CAS  PubMed  Google Scholar 

  76. Hu, L.; Wang, J.; Zhou, X.; Xiong, Z. H.; Zhao, J. J.; Yu, R.; Huang, F.; Zhang, H. D.; Chen, L. L. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci. Rep. 2016, 6, 32993.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  77. Zhao, B.; Li, X. D.; Shi, X. M.; Shi, X. Q.; Zhang, W.; Wu, G. F.; Wang, X. J.; Su, L. L.; Hu, D. H. Exosomal MicroRNAs derived from human amniotic epithelial cells accelerate wound healing by promoting the proliferation and migration of fibroblasts. Stem Cells Int. 2018, 2018, 5420463.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hu, J.; Chen, Y. W.; Huang, Y. B.; Su, Y. S. Human umbilical cord mesenchymal stem cell-derived exosomes suppress dermal fibroblasts-myofibroblats transition via inhibiting the TGF-β1/Smad 2/3 signaling pathway. Exp. Mol. Pathol. 2020, 115, 104468.

    Article  CAS  PubMed  Google Scholar 

  79. Matsuoka, T.; Takanashi, K.; Dan, K.; Yamamoto, K.; Tomobe, K.; Shinozuka, T. Effects of mesenchymal stem cell-derived exosomes on oxidative stress responses in skin cells. Mol. Biol. Rep. 2021, 48, 4527–4535.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, K. D.; Yu, L.; Li, F. R.; Li, X.; Wang, Z. F.; Zou, X. T.; Zhang, C.; Lv, K. P.; Zhou, B. P.; Mitragotri, S. et al. Topical application of exosomes derived from human umbilical cord mesenchymal stem cells in combination with sponge spicules for treatment of photoaging. Int. J. Nanomedicine 2020, 15, 2859–2872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Oh, M.; Lee, J.; Kim, Y. J.; Rhee, W. J.; Park, J. H. Exosomes derived from human induced pluripotent stem cells ameliorate the aging of skin fibroblasts. Int. J. Mol. Sci. 2018, 19, 1715.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Liang, J. X.; Liao, X.; Li, S. H.; Jiang, X.; Li, Z. H.; Wu, Y. D.; Xiao, L. L.; Xie, G. H.; Song, J. X.; Liu, H. W. Antiaging properties of exosomes from adipose-derived mesenchymal stem cells in photoaged rat skin. Biomed Res. Int. 2020, 2020, 6406395.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Santoro, M. M.; Gaudino, G. Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp. Cell Res. 2005, 304, 274–286.

    Article  CAS  PubMed  Google Scholar 

  84. Jiang, T. C.; Wang, Z. Y.; Sun, J. Human bone marrow mesenchymal stem cell-derived exosomes stimulate cutaneous wound healing mediates through TGF-β/Smad signaling pathway. Stem Cell Res. Ther. 2020, 11, 198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu, S. J.; Meng, M. Y.; Han, S.; Gao, H.; Zhao, Y. Y.; Yang, Y.; Lin, Z. Y.; Yang, L. R.; Zhu, K.; Han, R. et al. Umbilical cord mesenchymal stem cell-derived exosomes ameliorate HaCaT cell photo-aging. Rejuvenation Res. 2021, 24, 283–293.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, Y.; Han, F.; Gu, L.; Ji, P.; Yang, X. K.; Liu, M. D.; Tao, K.; Hu, D. H. Adipose mesenchymal stem cell exosomes promote wound healing through accelerated keratinocyte migration and proliferation by activating the AKT/HIF-1α axis. J. Mol. Histol. 2020, 51, 375–383.

    Article  PubMed  Google Scholar 

  87. Kim, S.; Lee, S. K.; Kim, H.; Kim, T. M. Exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells accelerate skin cell proliferation. Int. J. Mol. Sci. 2018, 19, 3119.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ma, T.; Fu, B. C.; Yang, X.; Xiao, Y. L.; Pan, M. X. Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing. J. Cell. Biochem. 2019, 120, 10847–10854.

    Article  CAS  PubMed  Google Scholar 

  89. Wang, T.; Jian, Z.; Baskys, A.; Yang, J. L.; Li, J. Y.; Guo, H.; Hei, Y.; Xian, P. P.; He, Z. Z.; Li, Z. Y. et al. MSC-derived exosomes protect against oxidative stress-induced skin injury via adaptive regulation of the NRF2 defense system. Biomaterials 2020, 257, 120264.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang, B.; Shi, Y. H.; Gong, A. H.; Pan, Z. J.; Shi, H.; Yang, H.; Fu, H. L.; Yan, Y. M.; Zhang, X.; Wang, M. et al. HucMSC exosome-delivered 14-3-3ζ orchestrates self-control of the wnt response via modulation of YAP during cutaneous regeneration. Stem Cells 2016, 34, 2485–2500.

    Article  CAS  PubMed  Google Scholar 

  91. Shen, C. Q.; Tao, C. B.; Zhang, A. J.; Li, X. Y.; Guo, Y. P.; Wei, H. X.; Yin, Q. C.; Li, Q.; Jin, P. S. Exosomal microRNA-93-3p secreted by bone marrow mesenchymal stem cells downregulates apoptotic peptidase activating factor 1 to promote wound healing. Bioengineered 2022, 13, 27–37.

    Article  CAS  PubMed  Google Scholar 

  92. Potente, M.; Gerhardt, H.; Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 2011, 146, 873–887.

    Article  CAS  PubMed  Google Scholar 

  93. Crisan, M.; Yap, S.; Casteilla, L.; Chen, C. W.; Corselli, M.; Park, T. S.; Andriolo, G.; Sun, B.; Zheng, B.; Zhang, L. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008, 3, 301–313.

    Article  CAS  PubMed  Google Scholar 

  94. Gu, W. D.; Hong, X. C.; Potter, C.; Qu, A. J.; Xu, Q. B. Mesenchymal stem cells and vascular regeneration. Microcirculation 2017, 24, e12324.

    Article  Google Scholar 

  95. Han, Y. D.; Ren, J.; Bai, Y.; Pei, X. T.; Han, Y. Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R. Int. J. Biochem. Cell Biol. 2019, 109, 59–68.

    Article  CAS  PubMed  Google Scholar 

  96. Li, X. Y.; Wang, Y.; Shi, L. Y.; Li, B. X.; Li, J.; Wei, Z. H.; Lv, H. Y.; Wu, L. Y.; Zhang, H.; Yang, B. et al. Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes. J. Nanobiotechnol. 2020, 18, 113.

    Article  CAS  Google Scholar 

  97. Komaki, M.; Numata, Y.; Morioka, C.; Honda, I.; Tooi, M.; Yokoyama, N.; Ayame, H.; Iwasaki, K.; Taki, A.; Oshima, N. et al. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis. Stem Cell Res. Ther. 2017, 8, 219.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Soni, N.; Gupta, S.; Rawat, S.; Krishnakumar, V.; Mohanty, S.; Banerjee, A. MicroRNA-enriched exosomes from different sources of mesenchymal stem cells can differentially modulate functions of immune cells and neurogenesis. Biomedicines 2021, 10, 69.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Tao, S. C.; Guo, S. C.; Li, M.; Ke, Q. F.; Guo, Y. P.; Zhang, C. Q. Chitosan wound dressings incorporating exosomes derived from MicroRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model. Stem Cells Transl. Med. 2017, 6, 736–747.

    Article  CAS  PubMed  Google Scholar 

  100. Ding, J. N.; Wang, X.; Chen, B.; Zhang, J. Y.; Xu, J. G. Exosomes derived from human bone marrow mesenchymal stem cells stimulated by deferoxamine accelerate cutaneous wound healing by promoting angiogenesis. Biomed. Res. Int. 2019, 2019, 9742765.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Qiu, X. Y.; Liu, J.; Zheng, C. X.; Su, Y. T.; Bao, L. L.; Zhu, B.; Liu, S. Y.; Wang, L. L.; Wang, X.; Wang, Y. R. et al. Exosomes released from educated mesenchymal stem cells accelerate cutaneous wound healing via promoting angiogenesis. Cell Prolif. 2020, 53, e12830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang, B.; Wu, X. D.; Zhang, X.; Sun, Y. X.; Yan, Y. M.; Shi, H.; Zhu, Y. H.; Wu, L. J.; Pan, Z. J.; Zhu, W. et al. Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway. Stem Cells Transl. Med. 2015, 4, 513–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yu, M. Y.; Liu, W.; Li, J. X.; Lu, J. X.; Lu, H. J.; Jia, W. P.; Liu, F. Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway. Stem Cell Res. Ther. 2020, 11, 350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Liu, L.; Liu, Y. Q.; Feng, C.; Chang, J.; Fu, R. Q.; Wu, T. T.; Yu, F.; Wang, X. T.; Xia, L. G.; Wu, C. T. et al. Lithium-containing biomaterials stimulate bone marrow stromal cell-derived exosomal miR-130a secretion to promote angiogenesis. Biomaterials 2019, 192, 523–536.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang, X. F.; Wang, T.; Wang, Z. X.; Huang, K. P.; Zhang, Y. W.; Wang, G. L.; Zhang, H. J.; Chen, Z. H.; Wang, C. Y.; Zhang, J. X. et al. Hypoxic ucMSC-secreted exosomal miR-125b promotes endothelial cell survival and migration during wound healing by targeting TP53INP1. Mol. Ther. Nucleic Acids 2021, 26, 347–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Huang, C.; Luo, W. F.; Wang, Q.; Ye, Y. F.; Fan, J. H.; Lin, L.; Shi, C. Y.; Wei, W.; Chen, H. W.; Wu, Y. Z. et al. Human mesenchymal stem cells promote ischemic repairment and angiogenesis of diabetic foot through exosome miRNA-21-5p. Stem Cell Res. 2021, 52, 102235.

    Article  CAS  PubMed  Google Scholar 

  107. Li, M. R.; Hou, Q.; Zhong, L. Z.; Zhao, Y. L.; Fu, X. B. Macrophage related chronic inflammation in non-healing wounds. Front. Immunol. 2021, 12, 681710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. DiPietro, L. A.; Wilgus, T. A.; Koh, T. J. Macrophages in healing wounds: Paradoxes and paradigms. Int. J. Mol. Sci. 2021, 22, 950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang, B.; Yin, Y. J.; Lai, R. C.; Tan, S. S.; Choo, A. B. H.; Lim, S. K. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev. 2014, 23, 1233–1244.

    Article  CAS  PubMed  Google Scholar 

  110. Wang, M.; Zhao, Y.; Zhang, Q. Y. Human mesenchymal stem cell-derived exosomes accelerate wound healing of mice eczema. J. Dermatolog. Treat. 2022, 33, 1401–1405.

    Article  CAS  PubMed  Google Scholar 

  111. Sorg, H.; Tilkorn, D. J.; Hager, S.; Hauser, J.; Mirastschijski, U. Skin wound healing: An update on the current knowledge and concepts. Eur. Surg. Res. 2017, 58, 81–94.

    Article  PubMed  Google Scholar 

  112. Eming, S. A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014, 6, 265sr6.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wang, Z. C.; Zhao, W. Y.; Cao, Y. Y.; Liu, Y. Q.; Sun, Q. H.; Shi, P.; Cai, J. Q.; Shen, X. Z.; Tan, W. Q. The roles of inflammation in keloid and hypertrophic scars. Front. Immunol. 2020, 11, 603187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Freedman, B. R.; Hwang, C.; Talbot, S.; Hibler, B.; Matoori, S.; Mooney, D. J. Breakthrough treatments for accelerated wound healing. Sci. Adv. 2023, 9, eade7007.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  115. Li, R. T.; Liu, K.; Huang, X.; Li, D.; Ding, J. X.; Liu, B.; Chen, X. S. Bioactive materials promote wound healing through modulation of cell behaviors. Adv. Sci. (Weinh.) 2022, 9, 2105152.

    CAS  PubMed  Google Scholar 

  116. Ha, D. H.; Kim, H. K.; Lee, J.; Kwon, H. H.; Park, G. H.; Yang, S. H.; Jung, J. Y.; Choi, H.; Lee, J. H.; Sung, S. et al. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells. 2020, 9, 1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Li, B.; Qian, L.; Pi, L.; Meng, X. X. A therapeutic role of exosomal lncRNA H19 from adipose mesenchymal stem cells in cutaneous wound healing by triggering macrophage M2 polarization. Cytokine 2023, 165, 156175.

    Article  CAS  PubMed  Google Scholar 

  118. Teng, L. P.; Maqsood, M.; Zhu, M.; Zhou, Y. T.; Kang, M. Z.; Zhou, J.; Chen, J. H. Exosomes derived from human umbilical cord mesenchymal stem cells accelerate diabetic wound healing via promoting M2 macrophage polarization, angiogenesis, and collagen deposition. Int. J. Mol. Sci. 2022, 23, 10421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Arabpour, M.; Saghazadeh, A.; Rezaei, N. Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cell-derived exosomes. Int. Immunopharmacol. 2021, 97, 107823.

    Article  CAS  PubMed  Google Scholar 

  120. Gao, W. L.; Liang, T. Z.; He, R. H.; Ren, J. H.; Yao, H.; Wang, K.; Zhu, L.; Xu, Y. Exosomes from 3D culture of marrow stem cells enhances endothelial cell proliferation, migration, and angiogenesis via activation of the HMGB1/AKT pathway. Stem Cell Res. 2020, 50, 102122.

    Article  PubMed  Google Scholar 

  121. Nie, W. B.; Huang, X. M.; Zhao, L. J.; Wang, T. W.; Zhang, D.; Xu, T. X.; Du, L.; Li, Y. X.; Zhang, W. Y.; Xiao, F. J. et al. Exosomal miR-17-92 derived from human mesenchymal stem cells promotes wound healing by enhancing angiogenesis and inhibiting endothelial cell ferroptosis. Tissue Cell 2023, 83, 102124.

    Article  CAS  PubMed  Google Scholar 

  122. Tutuianu, R.; Rosca, A. M.; Iacomi, D. M.; Simionescu, M.; Titorencu, I. Human mesenchymal stromal cell-derived exosomes promote in vitro wound healing by modulating the biological properties of skin keratinocytes and fibroblasts and stimulating angiogenesis. Int. J. Mol. Sci. 2021, 22, 6239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lee, J. H.; Won, Y. J.; Kim, H.; Choi, M.; Lee, E.; Ryoou, B.; Lee, S. G.; Cho, B. S. Adipose tissue-derived mesenchymal stem cell-derived exosomes promote wound healing and tissue regeneration. Int. J. Mol. Sci. 2023, 24, 10434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Camões, S. P.; Bulut, O.; Yazar, V.; Gaspar, M. M.; Simões, S.; Ferreira, R.; Vitorino, R.; Santos, J. M.; Gursel, I.; Miranda, J. P. 3D-MSCs A151 ODN-loaded exosomes are immunomodulatory and reveal a proteomic cargo that sustains wound resolution. J. Adv. Res. 2022, 41, 113–128.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Wang, P. H.; Huang, B. S.; Horng, H. C.; Yeh, C. C.; Chen, Y. J. Wound healing. J. Chin. Med. Assoc. 2018, 81, 94–101.

    Article  PubMed  Google Scholar 

  126. Karppinen, S. M.; Heljasvaara, R.; Gullberg, D.; Tasanen, K.; Pihlajaniemi, T. Toward understanding scarless skin wound healing and pathological scarring.. F1000Res 2019, 8, 787.

    Article  Google Scholar 

  127. Berman, B.; Maderal, A.; Raphael, B. Keloids and hypertrophic scars: Pathophysiology, classification, and treatment. Dermatol. Surg. 2017, 43, S3–S18.

    Article  CAS  PubMed  Google Scholar 

  128. Jiang, L.; Zhang, Y. G.; Liu, T.; Wang, X. X.; Wang, H.; Song, H. F.; Wang, W. T. Exosomes derived from TSG-6 modified mesenchymal stromal cells attenuate scar formation during wound healing. Biochimie. 2020, 177, 40–49.

    Article  CAS  PubMed  Google Scholar 

  129. Masson-Meyers, D. S.; Andrade, T. A. M.; Caetano, G. F.; Guimaraes, F. R.; Leite, M. N.; Leite, S. N.; Frade, M. A. C. Experimental models and methods for cutaneous wound healing assessment. Int. J. Exp. Pathol. 2020, 101, 21–37.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zhang, J. Y.; Guan, J. J.; Niu, X.; Hu, G. W.; Guo, S. C.; Li, Q.; Xie, Z. P.; Zhang, C. Q.; Wang, Y. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J. Transl. Med. 2015, 13, 49.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Zhang, Y.; Pan, Y. J.; Liu, Y. H.; Li, X. H.; Tang, L.; Duan, M. N.; Li, J.; Zhang, G. K. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulate regenerative wound healing via transforming growth factor-β receptor inhibition. Stem Cell Res. Ther. 2021, 12, 434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sjöqvist, S.; Ishikawa, T.; Shimura, D.; Kasai, Y.; Imafuku, A.; Bou-Ghannam, S.; Iwata, T.; Kanai, N. Exosomes derived from clinical-grade oral mucosal epithelial cell sheets promote wound healing. J. Extracell. Vesicles 2019, 8, 1565264.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Li, Q. J.; Gong, S. Q.; Yao, W. F.; Yang, Z. T.; Wang, R. J.; Yu, Z. J.; Wei, M. J. Exosome loaded genipin crosslinked hydrogel facilitates full thickness cutaneous wound healing in rat animal model. Drug Deliv. 2021, 28, 884–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhu, Z. Y.; Zhang, X. N.; Hao, H. J.; Xu, H. R.; Shu, J.; Hou, Q.; Wang, M. Exosomes derived from umbilical cord mesenchymal stem cells treat cutaneous nerve damage and promote wound healing. Front. Cell. Neurosci. 2022, 16, 913009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Han, C. S.; Liu, F.; Zhang, Y.; Chen, W. J.; Luo, W.; Ding, F. Z.; Lu, L.; Wu, C. J.; Li, Y. X. Human umbilical cord mesenchymal stem cell derived exosomes delivered using silk fibroin and sericin composite hydrogel promote wound healing. Front. Cardiovasc. Med. 2021, 8, 713021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Liu, Y. Y.; Zhang, M. W.; Liao, Y.; Chen, H. B.; Su, D. D.; Tao, Y. D.; Li, J. B.; Luo, K.; Wu, L. H.; Zhang, X. Y. et al. Human umbilical cord mesenchymal stem cell-derived exosomes promote murine skin wound healing by neutrophil and macrophage modulations revealed by single-cell RNA sequencing. Front. Immunol. 2023, 14, 1142088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhu, J.; Liu, Z. X.; Wang, L.; Jin, Q. S.; Zhao, Y. P.; Du, A. T.; Ding, N.; Wang, Y.; Jiang, H.; Zhu, L. Exosome mimetics-loaded hydrogel accelerates wound repair by transferring functional mitochondrial proteins. Front. Bioeng. Biotechnol. 2022, 10, 866505.

    Article  PubMed  PubMed Central  Google Scholar 

  138. El-Tookhy, O. S.; Shamaa, A. A.; Shehab, G. G.; Abdallah, A. N.; Azzam, O. M. Histological evaluation of experimentally induced critical size defect skin wounds using exosomal solution of mesenchymal stem cells derived microvesicles. Int. J. Stem Cells 2017, 10, 144–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhang, L.; Ouyang, P. R.; He, G. L.; Wang, X. W.; Song, D. F.; Yang, Y. J.; He, X. J. Exosomes from microRNA-126 overexpressing mesenchymal stem cells promote angiogenesis by targeting the PIK3R2-mediated PI3K/Akt signalling pathway. J. Cell. Mol. Med. 2021, 25, 2148–2162.

    Article  CAS  PubMed  Google Scholar 

  140. Li, C.; An, Y.; Sun, Y.; Yang, F.; Xu, Q. C.; Wang, Z. G. Adipose mesenchymal stem cell-derived exosomes promote wound healing through the WNT/β-catenin signaling pathway in dermal fibroblasts. Stem Cell Rev. Rep. 2022, 18, 2059–2073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhou, Y.; Zhao, B.; Zhang, X. L.; Lu, Y. J.; Lu, S. T.; Cheng, J.; Fu, Y.; Lin, L.; Zhang, N. Y.; Li, P. X. et al. Combined topical and systemic administration with human adipose-derived mesenchymal stem cells (hADSC) and hADSC-derived exosomes markedly promoted cutaneous wound healing and regeneration. Stem Cell Res. Ther. 2021, 12, 257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chen, G. Q.; Wu, Y. L.; Zou, L. J.; Zeng, Y. L. Effect of MicroRNA-146a modified adipose-derived stem cell exosomes on rat back wound healing.. Int. J. Low. Estrem. Wounds 2023, in press, DOI: https://doi.org/10.1177/15347346211038092..

  143. Xie, Y. Y.; Yu, L.; Cheng, Z. L.; Peng, Y. Y.; Cao, Z. Y.; Chen, B. C.; Duan, Y. H.; Wang, Y. SHED-derived exosomes promote LPS-induced wound healing with less itching by stimulating macrophage autophagy. J. Nanobiotechnol. 2022, 20, 239.

    Article  CAS  Google Scholar 

  144. Zhang, Y.; Shi, L. Y.; Li, X. Y.; Liu, Y.; Zhang, G. K.; Wang, Y. M. Placental stem cells-derived exosomes stimulate cutaneous wound regeneration via engrailed-1 inhibition. Front. Bioeng. Biotechnol. 2022, 10, 1044773.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Peck, M. D. Epidemiology of burns throughout the world. Part I: Distribution and risk factors. Burns 2011, 37, 1087–1100.

    Article  PubMed  Google Scholar 

  146. Wang, Y. W.; Beekman, J.; Hew, J.; Jackson, S.; Issler-Fisher, A. C.; Parungao, R.; Lajevardi, S. S.; Li, Z.; Maitz, P. K. M. Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring. Adv. Drug Deliv. Rev. 2018, 123, 3–17.

    Article  CAS  PubMed  Google Scholar 

  147. Oryan, A.; Alemzadeh, E.; Moshiri, A. Burn wound healing: Present concepts, treatment strategies and future directions. J. Wound Care 2017, 26, 5–19.

    Article  CAS  PubMed  Google Scholar 

  148. Abdullahi, A.; Amini-Nik, S.; Jeschke, M. G. Animal models in burn research. Cell. Mol. Life Sci. 2014, 71, 3241–3255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Brigham, P. A.; McLoughlin, E. Burn incidence and medical care use in the United States: Estimates, trends, and data sources. J. Burn Care Rehabil. 1996, 17, 95–107.

    Article  CAS  PubMed  Google Scholar 

  150. Bian, D. H.; Wu, Y.; Song, G. D.; Azizi, R.; Zamani, A. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: A comprehensive review. Stem Cell Res. Ther. 2022, 13, 24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yuan, R. H.; Dai, X. M.; Li, Y. S.; Li, C. S.; Liu, L. Exosomes from miR-29a-modified adipose-derived mesenchymal stem cells reduce excessive scar formation by inhibiting TGF-β2/Smad3 signaling. Mol. Med. Rep. 2021, 24, 758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Burgess, J. L.; Wyant, W. A.; Abdo Abujamra, B.; Kirsner, R. S.; Jozic, I. Diabetic wound-healing science. Medicina 2021, 57, 1072.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Armstrong, D. G.; Swerdlow, M. A.; Armstrong, A. A.; Conte, M. S.; Padula, W. V.; Bus, S. A. Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. J. Foot Ankle Res. 2020, 13, 16.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Huang, F.; Lu, X. Y.; Yang, Y.; Yang, Y. S.; Li, Y. Y.; Kuai, L.; Li, B.; Dong, H. Q.; Shi, J. L. Microenvironment-based diabetic foot ulcer nanomedicine. Adv. Sci. (Weinh.) 2023, 10, 2203308.

    CAS  PubMed  Google Scholar 

  155. Li, B.; Luan, S.; Chen, J.; Zhou, Y.; Wang, T. T.; Li, Z. J.; Fu, Y. L.; Zhai, A. X.; Bi, C. L. The MSC-derived exosomal lncRNA H19 Promotes Wound Healing in Diabetic Foot Ulcers by Upregulating PTEN via MicroRNA-152-3p. Mol. Ther. Nucleic Acids 2020, 19, 814–826.

    Article  CAS  PubMed  Google Scholar 

  156. Liu, W.; Yu, M. Y.; Xie, D.; Wang, L. Q.; Ye, C.; Zhu, Q.; Liu, F.; Yang, L. L. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Res. Ther. 2020, 11, 259.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Wang, L.; Cai, Y. H.; Zhang, Q. R.; Zhang, Y. Pharmaceutical activation of Nrf2 accelerates diabetic wound healing by exosomes from bone marrow mesenchymal stem cells. Int. J. Stem Cells 2022, 15, 164–172.

    Article  CAS  PubMed  Google Scholar 

  158. Yang, J. Y.; Chen, Z. Y.; Pan, D. Y.; Li, H. Z.; Shen, J. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. Int. J. Nanomedicine 2020, 15, 5911–5926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Han, Z. F.; Cao, J. H.; Liu, Z. Y.; Yang, Z.; Qi, R. X.; Xu, H. L. Exosomal lncRNA KLF3-AS1 derived from bone marrow mesenchymal stem cells stimulates angiogenesis to promote diabetic cutaneous wound healing. Diabetes Res. Clin. Pract. 2022, 183, 109126.

    Article  CAS  PubMed  Google Scholar 

  160. Zhang, Y. Y.; Zhang, P.; Gao, X. Q.; Chang, L. N.; Chen, Z. H.; Mei, X. F. Preparation of exosomes encapsulated nanohydrogel for accelerating wound healing of diabetic rats by promoting angiogenesis. Mater. Sci. Eng. C 2021, 120, 111671.

    Article  CAS  Google Scholar 

  161. Yan, C. C.; Xv, Y.; Lin, Z.; Endo, Y.; Xue, H.; Hu, Y. Q.; Hu, L. C.; Chen, L.; Cao, F. Q.; Zhou, W. et al. Human umbilical cord mesenchymal stem cell-derived exosomes accelerate diabetic wound healing via ameliorating oxidative stress and promoting angiogenesis. Front. Bioeng. Biotechnol. 2022, 10, 829868.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Wang, C. G.; Wang, M.; Xu, T. Z.; Zhang, X. X.; Lin, C.; Gao, W. Y.; Xu, H. Z.; Lei, B.; Mao, C. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics. 2019, 9, 65–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Shi, Q.; Qian, Z. Y.; Liu, D. H.; Sun, J.; Wang, X.; Liu, H. C.; Xu, J.; Guo, X. M. GMSC-derived exosomes combined with a chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model. Front. Physiol. 2017, 8, 904.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Liu, Z. W.; Yang, S.; Li, X. M.; Wang, S. T.; Zhang, T.; Huo, N.; Duan, R. X.; Shi, Q.; Zhang, J. J.; Xu, J. Local transplantation of GMSC-derived exosomes to promote vascularized diabetic wound healing by regulating the Wnt/β-catenin pathways. Nanoscale Adv. 2023, 5, 916–926.

    Article  CAS  PubMed  ADS  Google Scholar 

  165. Geng, X. R.; Qi, Y.; Liu, X. T.; Shi, Y. J.; Li, H. D.; Zhao, L. A multifunctional antibacterial and self-healing hydrogel laden with bone marrow mesenchymal stem cell-derived exosomes for accelerating diabetic wound healing. Biomater. Adv. 2022, 133, 112613.

    Article  PubMed  Google Scholar 

  166. Xiao, S. N.; Xiao, C. F.; Miao, Y.; Wang, J.; Chen, R. S.; Fan, Z. X.; Hu, Z. Q. Human acellular amniotic membrane incorporating exosomes from adipose-derived mesenchymal stem cells promotes diabetic wound healing. Stem Cell Res. Ther. 2021, 12, 255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Shi, R. F.; Jin, Y. P.; Zhao, S. M.; Yuan, H. X.; Shi, J. H.; Zhao, H. Hypoxic ADSC-derived exosomes enhance wound healing in diabetic mice via delivery of circ-Snhg11 and induction of M2-like macrophage polarization. Biomed. Pharmacother. 2022, 153, 113463.

    Article  CAS  PubMed  Google Scholar 

  168. Ren, S.; Chen, J.; Guo, J. H.; Liu, Y. T.; Xiong, H. W.; Jing, B. P.; Yang, X. F.; Li, G. C.; Kang, Y.; Wang, C. et al. Exosomes from adipose stem cells promote diabetic wound healing through the eHSP90/LRP1/AKT axis. Cells 2022, 11, 3229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhang, Y.; Li, M.; Wang, Y. C.; Han, F.; Shen, K.; Luo, L.; Li, Y.; Jia, Y. H.; Zhang, J.; Cai, W. X. et al. Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission. Bioact. Mater. 2023, 26, 323–336.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhang, Y.; Bai, X. Z.; Shen, K.; Luo, L.; Zhao, M.; Xu, C. L.; Jia, Y. H.; Xiao, D.; Li, Y.; Gao, X. W. et al. Exosomes derived from adipose mesenchymal stem cells promote diabetic chronic wound healing through SIRT3/SOD2. Cells 2022, 11, 2568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yang, H. L.; Zhang, Y.; Du, Z. W.; Wu, T. F.; Yang, C. Hair follicle mesenchymal stem cell exosomal lncRNA H19 inhibited NLRP3 pyroptosis to promote diabetic mouse skin wound healing. Aging 2023, 15, 791–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li, Q. K.; Hu, W. Z.; Huang, Q. L.; Yang, J.; Li, B. M.; Ma, K.; Wei, Q.; Wang, Y. X.; Su, J. L.; Sun, M. L. et al. MiR146a-loaded engineered exosomes released from silk fibroin patch promote diabetic wound healing by targeting IRAK1. Signal Transduct. Target. Ther. 2023, 8, 62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Fu, S. F.; Zhang, H. Y.; Li, X. C.; Zhang, Q. L.; Guo, C. Y.; Qiu, K. Q.; Feng, J. Y.; Liu, X. X.; Liu, D. W. Exosomes derived from human amniotic mesenchymal stem cells facilitate diabetic wound healing by angiogenesis and enrich multiple lncRNAs. Tissue Eng. Regen. Med. 2023, 20, 295–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bai, Y.; Han, Y. D.; Yan, X. L.; Ren, J.; Zeng, Q.; Li, X. D.; Pei, X. T.; Han, Y. Adipose mesenchymal stem cell-derived exosomes stimulated by hydrogen peroxide enhanced skin flap recovery in ischemia-reperfusion injury. Biochem. Biophys. Res. Commun. 2018, 500, 310–317.

    Article  CAS  PubMed  Google Scholar 

  175. Xie, L. Z.; Wang, J. W.; Zhang, Y. Y.; Chen, H.; Lin, D. S.; Ding, J.; Xuan, J. W.; Chen, Q.; Cai, L. Y. The effects of local injection of exosomes derived from BMSCs on random skin flap in rats. Am. J. Transl. Res. 2019, 11, 7063–7073.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Xiong, J. C.; Liu, Z. X.; Wu, M. L.; Sun, M. Y.; Xia, Y.; Wang, Y. C. Comparison of proangiogenic effects of adipose-derived stem cells and foreskin fibroblast exosomes on artificial dermis prefabricated flaps. Stem Cells Int. 2020, 2020, 5293850.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Cho, B. S.; Kim, J. O.; Ha, D. H.; Yi, Y. W. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res. Ther. 2018, 9, 187.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  178. Niu, Q. F.; Yang, Y.; Li, D. L.; Guo, W. W.; Wang, C.; Xu, H. Y.; Feng, Z. E.; Han, Z. X. Exosomes derived from bone marrow mesenchymal stem cells alleviate ischemia-reperfusion injury and promote survival of skin flaps in rats. Life 2022, 12, 1567.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  179. Shi, X.; Yang, G.; Liu, M. Y.; Yuan, M. T.; Wang, D.; Wang, X. F. Exosomes derived from human dental pulp stem cells increase flap survival with ischemia-reperfusion injuries. Regen. Med. 2023, 18, 313–327.

    Article  CAS  PubMed  Google Scholar 

  180. Gao, W.; Yuan, L. M.; Zhang, Y.; Huang, F. Z.; Gao, F.; Li, J.; Xu, F.; Wang, H.; Wang, Y. S. miR-1246-overexpressing exosomes suppress UVB-induced photoaging via regulation of TGF-β/Smad and attenuation of MAPK/AP-1 pathway. Photochem. Photobiol. Sci. 2023, 22, 135–146.

    Article  CAS  PubMed  Google Scholar 

  181. Gao, W.; Zhang, Y.; Yuan, L. M.; Huang, F. Z.; Wang, Y. S. Long non-coding RNA H19-overexpressing exosomes ameliorate UVB-induced photoaging by upregulating SIRT1 via sponging miR-138. Photochem. Photobiol 2023, in press, DOI: https://doi.org/10.1111/php.13801.

  182. Shin, K. O.; Ha, D. H.; Kim, J. O.; Crumrine, D. A.; Meyer, J. M.; Wakefield, J. S.; Lee, Y.; Kim, B.; Kim, S.; Kim, H. K. et al. Exosomes from human adipose tissue-derived mesenchymal stem cells promote epidermal barrier repair by inducing de novo synthesis of ceramides in atopic dermatitis. Cells 2020, 9, 680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Pan, W.; Chen, H. Y.; Wang, A. J.; Wang, F. S.; Zhang, X. K. Challenges and strategies: Scalable and efficient production of mesenchymal stem cells-derived exosomes for cell-free therapy. Life Sci. 2023, 319, 121524.

    Article  CAS  PubMed  Google Scholar 

  184. Joo, H. S.; Suh, J. H.; Lee, H. J.; Bang, E. S.; Lee, J. M. Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent. Int. J. Mol. Sci. 2020, 27, 727.

    Article  Google Scholar 

  185. Hu, C. X.; Li, L. J. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J. Cell. Mol. Med. 2018, 22, 1428–1442.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Hu, Y. Q.; Tao, R. Y.; Chen, L.; Xiong, Y.; Xue, H.; Hu, L. C.; Yan, C. C.; Xie, X. D.; Lin, Z.; Panayi, A. C. et al. Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis. J. Nanobiotechnol. 2021, 19, 150.

    Article  CAS  Google Scholar 

  187. Nowak-Stepniowska, A.; Osuchowska, P. N.; Fiedorowicz, H.; Trafny, E. A. Insight in hypoxia-mimetic agents as potential tools for mesenchymal stem cell priming in regenerative medicine. Stem Cells Int. 2022, 2022, 8775591.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Zhou, B. J.; Ge, T. T.; Zhou, L. P.; Jiang, L. X.; Zhu, L. J.; Yao, P. P.; Yu, Q. Dimethyloxalyl glycine regulates the HIF-1 signaling pathway in mesenchymal stem cells. Stem Cell Rev. Rep. 2020, 16, 702–710.

    Article  CAS  PubMed  Google Scholar 

  189. Shi, H.; Xu, X.; Zhang, B.; Xu, J. H.; Pan, Z. J.; Gong, A. H.; Zhang, X.; Li, R.; Sun, Y. X.; Yan, Y. M. et al. 3,3′-Diindolylmethane stimulates exosomal Wnt11 autocrine signaling in human umbilical cord mesenchymal stem cells to enhance wound healing. Theranostics 2017, 7, 1674–1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Hu, N.; Cai, Z. W.; Jiang, X. D.; Wang, C.; Tang, T.; Xu, T. Z.; Chen, H.; Li, X. Q.; Du, X. L.; Cui, W. G. Hypoxia-pretreated ADSC-derived exosome-embedded hydrogels promote angiogenesis and accelerate diabetic wound healing. Acta Biomater. 2023, 157, 175–186.

    Article  CAS  PubMed  Google Scholar 

  191. Han, Y. D.; Bai, Y.; Yan, X. L.; Ren, J.; Zeng, Q.; Li, X. D.; Pei, X. T.; Han, Y. Co-transplantation of exosomes derived from hypoxiapreconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting. Biochem. Biophys. Res. Commun. 2018, 497, 305–312.

    Article  CAS  PubMed  Google Scholar 

  192. Xue, C. L.; Shen, Y. M.; Li, X. C.; Li, B.; Zhao, S.; Gu, J. J.; Chen, Y. F.; Ma, B. T.; Wei, J. J.; Han, Q. et al. Exosomes derived from hypoxia-treated human adipose mesenchymal stem cells enhance angiogenesis through the PKA signaling pathway. Stem Cells Dev. 2018, 27, 456–465.

    Article  CAS  PubMed  Google Scholar 

  193. Wang, J.; Wu, H.; Peng, Y. X.; Zhao, Y.; Qin, Y. Y.; Zhang, Y. B.; Xiao, Z. B. Hypoxia adipose stem cell-derived exosomes promote high-quality healing of diabetic wound involves activation of PI3K/Akt pathways. J. Nanobiotechnol. 2021, 19, 202.

    Article  CAS  Google Scholar 

  194. Li, M. R.; Jiang, Y. F.; Hou, Q.; Zhao, Y. L.; Zhong, L. Z.; Fu, X. B. Potential pre-activation strategies for improving therapeutic efficacy of mesenchymal stem cells: Current status and future prospects. Stem Cell Res. Ther. 2022, 13, 146.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Dalmizrak, A.; Dalmizrak, O. Mesenchymal stem cell-derived exosomes as new tools for delivery of miRNAs in the treatment of cancer. Front. Bioeng. Biotechnol. 2022, 10, 956563.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Johnsen, K. B.; Gudbergsson, J. M.; Skov, M. N.; Pilgaard, L.; Moos, T.; Duroux, M. A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy. Biochim. Biophys. Acta Rev. Cancer 2014, 1846, 75–87.

    Article  CAS  Google Scholar 

  197. Wang, C. Y.; Liang, C. Y.; Wang, R.; Yao, X. L.; Guo, P.; Yuan, W. Z.; Liu, Y.; Song, Y.; Li, Z. H.; Xie, X. Y. The fabrication of a highly efficient self-healing hydrogel from natural biopolymers loaded with exosomes for the synergistic promotion of severe wound healing. Biomater. Sci. 2020, 8, 313–324.

    Article  Google Scholar 

  198. Zhou, Y.; Zhang, X. L.; Lu, S. T.; Zhang, N. Y.; Zhang, H. J.; Zhang, J.; Zhang, J. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration. Stem Cell Res. Ther. 2022, 13, 407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Khalatbari, E.; Tajabadi, M.; Khavandi, A. Multifunctional exosome-loaded silk fibroin/alginate structure for potential wound dressing application. Mater. Today Commun. 2022, 31, 103549.

    Article  CAS  Google Scholar 

  200. Yuan, M.; Liu, K.; Jiang, T.; Li, S. B.; Chen, J.; Wu, Z. H.; Li, W. Q.; Tan, R. Z.; Wei, W. Y.; Yang, X. F. et al. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and Tazarotene promote diabetic wound healing. J. Nanobiotechnol. 2022, 20, 147.

    Article  CAS  Google Scholar 

  201. Gan, J. J.; Zhang, X. X.; Ma, W. J.; Zhao, Y. J.; Sun, L. Y. Antibacterial, adhesive, and MSC exosomes encapsulated microneedles with spatio-temporal variation functions for diabetic wound healing. Nano Today. 2022, 47, 101630.

    Article  CAS  Google Scholar 

  202. Zhang, X. X.; Gan, J. J.; Fan, L.; Luo, Z. Q.; Zhao, Y. J. Bioinspired adaptable indwelling microneedles for treatment of diabetic ulcers. Adv. Mater. 2023, 35, 2210903.

    Article  CAS  Google Scholar 

  203. Ye, C. X.; Zhang, Y. Q.; Su, Z.; Wu, S. X.; Li, Y. X.; Yi, J. L.; Lai, W.; Chen, J.; Zheng, Y. hMSC exosomes as a novel treatment for female sensitive skin:An in vivo study. Front. oeng. otechnol. 2022, 10, 1053679.

    Google Scholar 

  204. Kwon, H. H.; Yang, S. H.; Lee, J.; Park, B. C.; Park, K. Y.; Jung, J. Y.; Bae, Y.; Park, G. H. Combination treatment with human adipose tissue stem cell-derived exosomes and fractional CO2 laser for acne scars: A 12-week prospective, double-blind, randomized, split-face study. Acta Derm. Venereol. 2020, 100, adv00310.

    Article  CAS  PubMed  Google Scholar 

  205. Cho, B. S.; Lee, J.; Won, Y.; Duncan, D. I.; Jin, R. C.; Lee, J.; Kwon, H. H.; Park, G. H.; Yang, S. H.; Park, B. C. et al. Skin brightening efficacy of exosomes derived from human adipose tissue-derived stem/stromal cells: A prospective, split-face, randomized placebo-controlled study. Cosmetics 2020, 7, 90.

    Article  CAS  Google Scholar 

  206. Sun, L.; Xu, R. M.; Sun, X. X.; Duan, Y. P.; Han, Y. M.; Zhao, Y. Y.; Qian, H.; Zhu, W.; Xu, W. R. Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell. Cytotherapy 2016, 18, 413–422.

    Article  CAS  PubMed  Google Scholar 

  207. Watanabe, Y.; Tsuchiya, A.; Terai, S. The development of mesenchymal stem cell therapy in the present, and the perspective of cell-free therapy in the future. Clin. Mol. Hepatol. 2021, 27, 70–80.

    Article  PubMed  Google Scholar 

  208. Chen, J. C.; Li, P. L.; Zhang, T. Y.; Xu, Z. P.; Huang, X. W.; Wang, R. M.; Du, L. T. Review on strategies and technologies for exosome isolation and purification. Front. Bioeng. Biotechnol. 2022, 9, 811971.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Kim, M.; Yun, H. W.; Park, D. Y.; Choi, B. H.; Min, B. H. Three-dimensional spheroid culture increases exosome secretion from mesenchymal stem cells. Tissue Eng. Regen. Med. 2018, 15, 427–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Haraszti, R. A.; Miller, R.; Stoppato, M.; Sere, Y. Y.; Coles, A.; Didiot, M. C.; Wollacott, R.; Sapp, E.; Dubuke, M. L.; Li, X. N. et al. Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity. Mol. Ther. 2018, 26, 2838–2847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Lee, D. H.; Yun, D. W.; Kim, Y. H.; Im, G. B.; Hyun, J.; Park, H. S.; Bhang, S. H.; Choi, S. H. Various three-dimensional culture methods and cell types for exosome production. Tissue Eng. Regen. Med. 2023, 20, 621–635.

    Article  CAS  PubMed  Google Scholar 

  212. Lee, J. H.; Ha, D. H.; Go, H. K.; Youn, J.; Kim, H. K.; Jin, R. C.; Miller, R. B.; Kim, D. H.; Cho, B. S.; Yi, Y. W. Reproducible large-scale isolation of exosomes from adipose tissue-derived mesenchymal stem/stromal cells and their application in acute kidney injury. Int. J. Mol. Sci. 2020, 21, 4774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Baglio, S. R.; Rooijers, K.; Koppers-Lalic, D.; Verweij, F. J.; Pérez Lanzón, M.; Zini, N.; Naaijkens, B.; Perut, F.; Niessen, H. W. M.; Baldini, N. et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res. Ther. 2015, 6, 127.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Pomatto, M.; Gai, C.; Negro, F.; Cedrino, M.; Grange, C.; Ceccotti, E.; Togliatto, G.; Collino, F.; Tapparo, M.; Figliolini, F. et al. Differential therapeutic effect of extracellular vesicles derived by bone marrow and adipose mesenchymal stem cells on wound healing of diabetic ulcers and correlation to their cargoes. Int. J. Mol. Sci. 2021, 22, 3851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Chen, Y. S.; Lin, E. Y.; Chiou, T. W.; Harn, H. J. Exosomes in clinical trial and their production in compliance with good manufacturing practice. Tzu Chi Med. J. 2020, 32, 113–120.

    Article  CAS  Google Scholar 

  216. Ahn, S. H.; Ryu, S. W.; Choi, H.; You, S.; Park, J.; Choi, C. Manufacturing therapeutic exosomes: From bench to industry. Mol. Cells 2022, 45, 284–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Chua, J. K. E.; Lim, J.; Foong, L. H.; Mok, C. Y.; Tan, H. Y.; Tung, X. Y.; Ramasamy, T. S.; Govindasamy, V.; Then, K. Y.; Das, A. K. et al. Mesenchymal stem cell-derived extracellular vesicles: Progress and remaining hurdles in developing regulatory compliant quality control assays. In Cell Biology and Translational Medicine. Turksen, K., Ed.; Springer: Cham, 2022; pp 191–211.

    Google Scholar 

  218. Adlerz, K.; Patel, D.; Rowley, J.; Ng, K.; Ahsan, T. Strategies for scalable manufacturing and translation of MSC-derived extracellular vesicles. Stem Cell Res. 2020, 48, 101978.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 32071331 and 31600792), and Post-Doctor Research Project, West China Hospital, Sichuan University (No. 2018HXBH053). Graphical abstract was created with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yizhou Huang, Xin Tang or Huiqi Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Li, H., Zhang, J. et al. Mesenchymal stem cell-derived exosomes: versatile nanomaterials for skin wound treatment. Nano Res. 17, 2836–2856 (2024). https://doi.org/10.1007/s12274-023-6080-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6080-5

Keywords

Navigation