Skip to main content
Log in

Boosting cycling stability by regulating surface oxygen vacancies of LNMO by rapid calcination

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Spinel LiNi0.5−xMn1.5+xO4 (LNMO) has attracted intensive interest for lithium-ion battery due to its high voltage and high energy density. However, severe capacity fade attributed to unstable surface structure has hampered its commercialization. Oxygen vacancies (OVs) tend to occur in the surface of the material and lead to surface structure reconstruction, which deteriorates the battery performance during electrochemical cycling. Here, we utilize high-temperature-shock (HTS) method to synthesize LNMO materials with fewer surface OVs. Rapid calcination drives lower surface OVs concentration, reducing the content of Mn3+ and surface reconstruction layers, which is beneficial to obtain a stable crystal structure. The LNMO material synthesized by HTS method delivers an initial capacity of 127 mAh·g−1 at 0.1 C and capacity retention of 81.6% after 300 cycles at 1 C, and exhibits excellent performance at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, N. J.; Deng, W. J.; Xu, Z. X.; Wang, X. L. Upcycling of spent LiCoO2 cathodes via nickel- and manganese-doping. Carbon Energy 2023, 5, e231.

    CAS  Google Scholar 

  2. Wang, H.; Ben, L. B.; Yu, H. L.; Chen, Y. Y.; Yang, X. N.; Huang, X. J. Understanding the effects of surface reconstruction on the electrochemical cycling performance of the spinel LiNi0.5Mn1.5O4 cathode material at elevated temperatures. J. Mater. Chem. A 2017, 5, 822–834.

    CAS  Google Scholar 

  3. Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xiao, B. W.; Liu, H. S.; Liu, J.; Sun, Q.; Wang, B. Q.; Kaliyappan, K.; Zhao, Y.; Banis, M. N.; Liu, Y. L.; Li, R. Y. et al. Nanoscale manipulation of spinel lithium nickel manganese oxide surface by multisite ti occupation as high-performance cathode. Adv. Mater. 2017, 29, 1703764.

    Google Scholar 

  5. Huang, Y. H. The discovery of cathode materials for lithium-ion batteries from the view of interdisciplinarity. Interdiscip. Mater. 2022, 1, 323–329.

    Google Scholar 

  6. Cui, B. H.; Hu, Z.; Liu, C.; Sun, Q.; Wang, B. Q.; Kaliyappan, K.; Zhao, Y.; Banis, M. N.; Liu, Y. L.; Li, R. Y. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.

    ADS  CAS  Google Scholar 

  7. He, S. Y.; Zeng, J. B.; Habte, B. T.; Jiang, F. M. Numerical reconstruction of microstructure of graphite anode of lithium-ion battery. Sci. Bull. 2016, 61, 656–664.

    CAS  Google Scholar 

  8. Liu, Y. G.; Zhang, C. P.; Liu, C. F.; Song, H. Q.; Nan, X. H.; Cao, G. Z. The effect of nitrogen annealing on lithium ion intercalation in nickel-doped lithium trivanadate. Sci. Bull. 2016, 61, 587–593.

    CAS  Google Scholar 

  9. Zhang, L. X.; Liu, Y. M.; You, Y.; Vinu, A.; Mai, L. NASICONs-type solid-state electrolytes: The history, physicochemical properties, and challenges. Interdiscip. Mater. 2023, 2, 91–110.

    Google Scholar 

  10. Liu, Y. C.; Chen, Y. F.; Wang, J.; Wang, W.; Ding, Z. Y.; Li, L. Y.; Zhang, Y.; Deng, Y. D.; Wu, J. W.; Chen, Y. N. Hierarchical yolk–shell structured Li-rich cathode boosting cycling and voltage stabled LIBs. Nano Res. 2022, 15, 3178–3186.

    ADS  CAS  Google Scholar 

  11. Liang, G. M.; Peterson, V. K.; See, K. W.; Guo, Z. P.; Pang, W. K. Developing high-voltage spinel LiNi0.5Mn1.5O4 cathodes for high-energy-density lithium-ion batteries: Current achievements and future prospects. J. Mater. Chem. A 2020, 8, 15373–15398.

    CAS  Google Scholar 

  12. Liang, G. M.; Peterson, V. K.; Wu, Z. B.; Zhang, S. L.; Hao, J. N.; Lu, C. Z.; Chuang, C. H.; Lee, J. F.; Liu, J.; Leniec, G. et al. Crystallographic-site-specific structural engineering enables extraordinary electrochemical performance of high-voltage LiNi0.5Mn1.5O4 spinel cathodes for lithium-ion batteries. Adv. Mater. 2021, 33, e2101413.

    PubMed  Google Scholar 

  13. Liang, G. M.; Wu, Z. B.; Didier, C.; Zhang, W. C.; Cuan, J.; Li, B. H.; Ko, K. Y.; Hung, P. Y.; Lu, C. Z.; Chen, Y. Z. et al. A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping. Angew. Chem., Int. Ed. 2020, 59, 10594–10602.

    CAS  Google Scholar 

  14. Li, W. D.; Song, B. H.; Manthiram, A. High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 2017, 46, 3006–3059.

    CAS  PubMed  Google Scholar 

  15. Piao, J. Y.; Gu, L.; Wei, Z. X.; Ma, J. M.; Wu, J. P.; Yang, W. L.; Gong, Y.; Sun, Y. G.; Duan, S. Y.; Tao, X. S. et al. Phase control on surface for the stabilization of high energy cathode materials of lithium ion batteries. J. Am. Chem. Soc. 2019, 141, 4900–4907.

    CAS  PubMed  Google Scholar 

  16. Yi, T. F.; Mei, J.; Zhu, Y. R. Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. J. Power Sources 2016, 316, 85–105.

    ADS  CAS  Google Scholar 

  17. Han, Y.; Jiang, Y. S.; Yu, F. D.; Deng, L.; Ke, W.; Zhang, S. J.; Que, L. F.; Wu, B.; Ding, F.; Zhao, L. et al. Addressing Mn dissolution in high-voltage LiNi0.5Mn1.5O4 cathodes via interface phase modulation. Adv. Funct. Mater. 2022, 32, 2207285.

    CAS  Google Scholar 

  18. Ma, J.; Hu, P.; Cui, G. L.; Chen, L. Q. Surface and interface issues in spinel LiNi0.5Mn1.5O4: Insights into a potential cathode material for high energy density lithium ion batteries. Chem. Mater. 2016, 28, 3578–3606.

    CAS  Google Scholar 

  19. Yin, C. J.; Zhou, H. M.; Yang, Z. H.; Li, J. Synthesis and electrochemical properties of LiNi0.5Mn1.5O4 for Li-ion batteries by the metal-organic framework method. ACS Appl. Mater. Interfaces 2018, 10, 13625–13634.

    CAS  PubMed  Google Scholar 

  20. Lin, M. X.; Ben, L. B.; Sun, Y.; Wang, H.; Yang, Z. Z.; Gu, L.; Yu, X. Q.; Yang, X. Q.; Zhao, H. F.; Yu, R. C. et al. Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cycle. Chem. Mater. 2015, 27, 292–303.

    ADS  CAS  Google Scholar 

  21. Liu, T. C.; Dai, A.; Lu, J.; Yuan, Y. F.; Xiao, Y. G.; Yu, L.; Li, M.; Gim, J.; Ma, L.; Liu, J. J. et al. Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nat. Commun. 2019, 10, 4721.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deng, S. X.; Wang, B. Q.; Yuan, Y. F.; Li, X.; Sun, Q.; Doyle-Davis, K.; Banis, M. N.; Liang, J. N.; Zhao, Y.; Li, J. J. et al. Manipulation of an ionic and electronic conductive interface for highly-stable high-voltage cathodes. Nano Energy 2019, 65, 103988.

    CAS  Google Scholar 

  23. Kuppan, S.; Xu, Y. H.; Liu, Y. J.; Chen, G. Y. Phase transformation mechanism in lithium manganese nickel oxide revealed by single-crystal hard X-ray microscopy. Nat. Commun. 2017, 8, 14309.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wei, L. Y.; Tao, J. M.; Yang, Y. M.; Fan, X. Y.; Ran, X. X.; Li, J. X.; Lin, Y. B.; Huang, Z. G. Surface sulfidization of spinel LiNi0.5Mn1.5O4 cathode material for enhanced electrochemical performance in lithium-ion batteries. Chem. Eng. J. 2020, 384, 123268.

    CAS  Google Scholar 

  25. Fang, X.; Lin, F.; Nordlund, D.; Mecklenburg, M.; Ge, M. Y.; Rong, J. P.; Zhang, A. Y.; Shen, C. F.; Liu, Y. H.; Cao, Y. et al. Atomic insights into the enhanced surface stability in high voltage cathode materials by ultrathin coating. Adv. Funct. Mater. 2017, 27, 1602873.

    Google Scholar 

  26. Luo, J. W.; Zhang, J. C.; Guo, Z. X.; Liu, Z. D.; Dou, S. M.; Liu, W. D.; Chen, Y. N.; Hu, W. B. Recycle spent graphite to defect-engineered, high-power graphite anode. Nano Res. 2023, 16, 4240–4245.

    ADS  CAS  Google Scholar 

  27. Lee, Y.; Mun, J.; Kim, D. W.; Lee, J. K.; Choi, W. Surface modification of LiNi0.5Mn1.5O4 cathodes with ZnAl2O4 by a sol-gel method for lithium ion batteries. Electrochim. Acta 2014, 115, 326–331.

    CAS  Google Scholar 

  28. Liu, H. D.; Wang, J.; Zhang, X. F.; Zhou, D.; Qi, X.; Qiu, B.; Fang, J. H.; Kloepsch, R.; Schumacher, G.; Liu, Z. P. et al. Morphological evolution of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: The critical effects of surface orientations and particle size. ACS Appl. Mater. Interfaces 2016, 8, 4661–4675.

    CAS  PubMed  Google Scholar 

  29. Wang, K. X.; Li, X. H.; Chen, J. S. Surface and interface engineering of electrode materials for lithium-ion batteries. Adv. Mater. 2015, 27, 527–545.

    CAS  PubMed  Google Scholar 

  30. Wang, D. D.; Gao, C.; Zhou, X. F.; Peng, S.; Tang, M. X.; Wang, Y. G.; Huang, L. J.; Yang, W. G.; Gao, X. Enhancing reversibility of LiNi0.5Mn1.5O4 by regulating surface oxygen deficiency. Carbon Energy, in press, https://doi.org/10.1002/cey2.338.

  31. Lee, S.; Jin, W.; Kim, S. H.; Joo, S. H.; Nam, G.; Oh, P.; Kim, Y. K.; Kwak, S. K.; Cho, J. Oxygen vacancy diffusion and condensation in lithium-ion battery cathode materials. Angew. Chem., Int. Ed. 2019, 58, 10478–10485.

    CAS  Google Scholar 

  32. Yan, P. F.; Zheng, J. M.; Tang, Z. K.; Devaraj, A.; Chen, G. Y.; Amine, K.; Zhang, J. G.; Liu, L. M.; Wang, C. M. Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat Nanotechnol 2019, 14, 602–608.

    ADS  CAS  PubMed  Google Scholar 

  33. Gao, X.; Ikuhara, Y. H.; Fisher, C. A. J.; Huang, R.; Kuwabara, A.; Moriwake, H.; Kohama, K.; Ikuhara, Y. Oxygen loss and surface degradation during electrochemical cycling of lithium-ion battery cathode material LiMn2O4. J. Mater. Chem. A 2019, 7, 8845–8854.

    CAS  Google Scholar 

  34. Zhang, Y. H.; Zhang, D.; Wu, L. R.; Ma, J.; Yi, Q.; Wang, Z. X.; Wang, X. F.; Wu, Z.; Zhang, C.; Hu, N. F. et al. Stabilization of lattice oxygen in li-rich Mn-based oxides via swing-like non-isothermal sintering. Adv. Energy Mater. 2022, 12, 2202341.

    CAS  Google Scholar 

  35. Luo, X. L.; Chen, H. X.; Liu, Z. Z.; Luo, H.; Zhou, H. M. Enhanced electrochemical performance of LiNi0.5Mn1.5O4 by a dual modification of Ti doping and in situ coating using metal-organic frameworks as precursors. Ionics 2022, 28, 2099–2115.

    CAS  Google Scholar 

  36. Zhu, W.; Zhang, J. C.; Luo, J. W.; Zeng, C. H.; Su, H.; Zhang, J. F.; Liu, R.; Hu, E. Y.; Liu, Y. S.; Liu, W. D. et al. Ultrafast non-equilibrium synthesis of cathode materials for Li-ion batteries. Adv. Mater. 2023, 35, e2208974.

    PubMed  Google Scholar 

  37. Zhang, J. C.; Wen, J.; Liu, W. D.; Cui, X. Y.; Chen, Y. N. Cryo-EM for nanomaterials: Progress and perspective. Sci. China Mater. 2022, 65, 2613–2626.

    Google Scholar 

  38. Zhang, J. C.; Luo, J. W.; Guo, Z. X.; Liu, Z. D.; Duan, C. P.; Dou, S. M.; Yuan, Q. Y.; Liu, P.; Ji, K. M.; Zeng, C. H. et al. Ultrafast manufacturing of ultrafine structure to achieve an energy density of over 120 Wh·kg−1 in supercapacitors. Adv. Energy Mater. 2023, 13, 2203061.

    CAS  Google Scholar 

  39. Liu, Z. D.; Duan, C. P.; Dou, S. M.; Yuan, Q. Y.; Xu, J.; Liu, W. D.; Chen, Y. N. Ultrafast porous carbon activation promises high-energy density supercapacitors. Small 2022, 18, 2200954.

    CAS  Google Scholar 

  40. Chen, Y. N.; Egan, G. C.; Wan, J. Y.; Zhu, S. Z.; Jacob, R. J.; Zhou, W. B.; Dai, J. Q.; Wang, Y. B.; Danner, V. A.; Yao, Y. G. et al. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films. Nat. Commun. 2016, 7, 12332.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zeng, C. H.; Duan, C. P.; Guo, Z. X.; Liu, Z. D.; Dou, S. M.; Yuan, Q. Y.; Liu, P.; Zhang, J. C.; Luo, J. W.; Liu, W. D. et al. Ultrafastly activated needle coke as electrode material for supercapacitors. Prog. Nat. Sci. Mater. Int. 2022, 32, 786–792.

    CAS  Google Scholar 

  42. Cui, B. H.; Liu, C.; Zhang, J. F.; Lu, J. J.; Liu, S. L.; Chen, F. S.; Zhou, W.; Qian, G. Y.; Wang, Z.; Deng, Y. D. et al. Waste to wealth: Defect-rich Ni-incorporated spent LiFePO4 for efficient oxygen evolution reaction. Sci. China Mater. 2021, 64, 2710–2718.

    CAS  Google Scholar 

  43. Okamoto, Y. Ambivalent effect of oxygen vacancies on Li2MnO3: A first-principles study. J. Electrochem. Soc. 2012, 159, A152–A157.

    CAS  Google Scholar 

  44. Liu, W. J.; Shi, Q.; Qu, Q. T.; Gao, T.; Zhu, G. B.; Shao, J.; Zheng, H. H. Improved Li-ion diffusion and stability of a LiNi0.5Mn1.5O4 cathode through in situ co-doping with dual-metal cations and incorporation of a superionic conductor. J. Mater. Chem. A 2017, 5, 145–154.

    CAS  Google Scholar 

  45. Xia, Y. Y.; Sakai, T.; Fujieda, T.; Yang, X. Q.; Sun, X.; Ma, Z. F.; Mcbreen, J.; Yoshio, M. Correlating capacity fading and structural changes in Li1+yMn2−yO4−δ spinel cathode materials: A systematic study on the effects of Li/Mn ratio and oxygen deficiency. J. Electrochem. Soc. 2001, 148, A723–A729.

    CAS  Google Scholar 

  46. Lan, L. F.; Li, S.; Li, J.; Lu, L.; Lu, Y.; Huang, S.; Xu, S. J.; Pan, C. Y.; Zhao, F. H. Enhancement of the electrochemical performance of the spinel structure LiNi0.5−xGaxMn1.5O4 cathode material by Ga doping. Nanoscale Res. Lett. 2018, 13, 251.

    ADS  PubMed  PubMed Central  Google Scholar 

  47. Gao, P.; Wang, L.; Chen, L.; Jiang, X. F.; Pinto, J.; Yang, G. Microwave rapid preparation of LiNi0.5Mn1.5O4 and the improved high rate performance for lithium-ion batteries. Electrochim. Acta 2013, 100, 125–132.

    CAS  Google Scholar 

  48. Nisar, U.; Al-Hail, S. A. J. A.; Kumar, P. R.; Abraham, J. J.; Mesallam, S. M. A.; Shakoor, R. A.; Amin, R.; Essehli, R.; Al-Qaradawi, S. Fast and scalable synthesis of LiNi0.5Mn1.5O4 cathode by sol-gel-assisted microwave sintering. Energy Technol. 2021, 9, 2100085.

    CAS  Google Scholar 

  49. Huang, R.; Ikuhara, Y. H.; Mizoguchi, T.; Findlay, S. D.; Kuwabara, A.; Fisher, C. A. J.; Moriwake, H.; Oki, H.; Hirayama, T.; Ikuhara, Y. Oxygen-vacancy ordering at surfaces of lithium manganese(III, IV) oxide spinel nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 3053–3057.

    CAS  Google Scholar 

  50. Hwang, S.; Chang, W.; Kim, S. M.; Su, D.; Kim, D. H.; Lee, J. Y.; Chung, K. Y.; Stach, E. A. Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2 cathode materials induced by the initial charge. Chem. Mater. 2014, 26, 1084–1092.

    CAS  Google Scholar 

  51. Zuo, W. H.; Luo, M. Z.; Liu, X. S.; Wu, J.; Liu, H. D.; Li, J.; Winter, M.; Fu, R. Q.; Yang, W. L.; Yang, Y. Li-rich cathodes for rechargeable Li-based batteries: Reaction mechanisms and advanced characterization techniques. Energy Environ. Sci. 2020, 13, 4450–4497.

    CAS  Google Scholar 

  52. Hu, E. Y.; Yu, X. Q.; Lin, R. Q.; Bi, X. X.; Lu, J.; Bak, S.; Nam, K. W.; Xin, H. L.; Jaye, C.; Fischer, D. A. et al. Evolution of redox couples in Li-and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 2018, 3, 690–698.

    ADS  CAS  Google Scholar 

  53. Wang, S. N.; Hua, W. B.; Zhou, S.; He, X. F.; Liu, L. J. In situ synchrotron radiation diffraction study of the Li+ de/intercalation behavior in spinel LiNi0.5Mn1.5O4−δ. Chem. Eng. J. 2020, 400, 125998.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (No. 52171219).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunhua Xu or Yanan Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Zeng, C., Zhu, W. et al. Boosting cycling stability by regulating surface oxygen vacancies of LNMO by rapid calcination. Nano Res. 17, 2671–2677 (2024). https://doi.org/10.1007/s12274-023-6076-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6076-1

Keywords

Navigation