Skip to main content
Log in

Molten metal-organic complex to synthesize versatile ultrathin non-layered oxides

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials have attracted a great deal of research interest because of their unique electrical, magnetic, optical, mechanical, and catalytic properties for various applications. To date, however, it is still difficult to fabricate most functional oxides as 2D materials unless they have a layered structure. Herein, we report a one-step universal strategy for preparing versatile non-layered oxide nanosheets by directly annealing the mixture of metal nitrate and dimethyl imidazole (2-MI). The 2-MI plays the key role for 2D oxides since 2-MI owns a very low molten point and sublimation temperature, in which its molten liquid can coordinate with metal ions, forming a metal-organic framework, and easily puffing by its gas molecules. A total of 17 materials were prepared by this strategy, including non-layered metal oxide nanosheets as well as metal/metal oxide loaded nitrogen-doped carbon nanosheets. The as-prepared cobalt particle-loaded nitrogen-doped carbon nanosheets (Co@N/C) exhibit remarkable bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalytic activity and durability. Besides, the Zn-air battery utilizing a Co@N/C catalyst exhibits high power density of 174.3 mW·cm−2. This facile strategy opens up a new way for large-scale synthesis of 2D oxides that holds great potential to push 2D oxides for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, J. B.; Li, Q.; Shuck, C. E.; Maleski, K.; Alshareef, H. N.; Zhou, J.; Gogotsi, Y.; Huang, L. An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes. Nano Res. 2022, 15, 535–541.

    Article  ADS  Google Scholar 

  2. Kumbhakar, P.; Chowde Gowda, C.; Mahapatra, P. L.; Mukherjee, M.; Malviya, K. D.; Chaker, M.; Chandra, A.; Lahiri, B.; Ajayan, P. M.; Jariwala, D. et al. Emerging 2D metal oxides and their applications. Mater. Today 2021, 45, 142–168.

    Article  CAS  Google Scholar 

  3. Mei, J.; Liao, T.; Kou, L. Z.; Sun, Z. Q. Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries. Adv. Mater. 2017, 29, 1700176.

    Article  Google Scholar 

  4. Ten Elshof, J. E.; Yuan, H. Y.; Gonzalez Rodriguez, P. Two-dimensional metal oxide and metal hydroxide nanosheets: Synthesis, controlled assembly and applications in energy conversion and storage. Adv. Energy Mater. 2016, 6, 1600355.

    Article  Google Scholar 

  5. Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451–9469.

    Article  CAS  PubMed  Google Scholar 

  6. Gao, X.; Xiong, L. K.; Wu, J. B.; Wan, J.; Huang, L. Scalable and controllable synthesis of 2D high-proportion 1T-phase MoS2. Nano Res. 2020, 13, 2933–2938.

    Article  CAS  ADS  Google Scholar 

  7. Hong, S. S.; Yu, J. H.; Lu, D.; Marshall, A. F.; Hikita, Y.; Cui, Y.; Hwang, H. Y. Two-dimensional limit of crystalline order in perovskite membrane films. Sci. Adv. 2017, 3, eaao5173.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ji, D. X.; Cai, S. H.; Paudel, T. R.; Sun, H. Y.; Zhang, C. C.; Han, L.; Wei, Y. F.; Zang, Y. P.; Gu, M.; Zhang, Y. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 2019, 570, 87–90.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Zhao, W.; Cui, C. C.; Xu, Y. H.; Liu, Q. Y.; Zhang, Y.; Zhang, Z. H.; Lu, S. C.; Rong, Z. Q.; Li, X. Z.; Fang, Y. Y. et al. Triggering Pt activity sites in basal plane of van der Waals PtTe2 materials by amorphization engineering for hydrogen evolution. Adv. Mater. 2023, 35, 2301593.

    Article  CAS  Google Scholar 

  11. Alsaif, M. M. Y. A.; Chrimes, A. F.; Daeneke, T.; Balendhran, S.; Bellisario, D. O.; Son, Y.; Field, M. R.; Zhang, W.; Nili, H.; Nguyen, E. P. et al. High-performance field effect transistors using electronic inks of 2D molybdenum oxide nanoflakes. Adv. Funct. Mater. 2016, 26, 91–100.

    Article  CAS  Google Scholar 

  12. Ma, R. Z.; Sasaki, T. Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites. Adv. Mater. 2010, 22, 5082–5104.

    Article  CAS  PubMed  Google Scholar 

  13. Adpakpang, K.; Oh, S. M.; Agyeman, D. A.; Jin, X. Y.; Jarulertwathana, N.; Kim, I. Y.; Sarakonsri, T.; Kang, Y. M.; Hwang, S. J. Holey 2D nanosheets of low-valent manganese oxides with an excellent oxygen catalytic activity and a high functionality as a catalyst for Li-O2 batteries. Adv. Funct. Mater. 2018, 28, 1707106.

    Article  Google Scholar 

  14. Weaver, J. F. Surface chemistry of late transition metal oxides. Chem. Rev. 2013, 113, 4164–4215.

    Article  CAS  PubMed  Google Scholar 

  15. Chia, X.; Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 2018, 1, 909–921.

    Article  CAS  Google Scholar 

  16. Hu, Z. M.; Xiao, X.; Jin, H. Y.; Li, T. Q.; Chen, M.; Liang, Z.; Guo, Z. F.; Li, J.; Wan, J.; Huang, L. et al. Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nat. Commun. 2017, 8, 15630.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Yang, C. S.; Shang, D. S.; Liu, N.; Fuller, E. J.; Agrawal, S.; Talin, A. A.; Li, Y. Q.; Shen, B. G.; Sun, Y. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Adv. Funct. Mater. 2018, 28, 1804170.

    Article  Google Scholar 

  18. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Lee, J. M.; Kang, B.; Jo, Y. K.; Hwang, S. J. Organic intercalant-free liquid exfoliation route to layered metal-oxide nanosheets via the control of electrostatic interlayer interaction. ACS Appl. Mater. Interfaces 2019, 11, 12121–12132.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, C.; Park, S. H.; O’Brien, S. E.; Seral-Ascaso, A.; Liang, M. Y.; Hanlon, D.; Krishnan, D.; Crossley, A.; McEvoy, N.; Coleman, J. N. et al. Liquid exfoliation of interlayer spacing-tunable 2D vanadium oxide nanosheets: High capacity and rate handling Li-ion battery cathodes. Nano Energy 2017, 39, 151–161.

    Article  CAS  Google Scholar 

  21. Wu, J. B.; Su, J. W.; Wu, T.; Huang, L.; Li, Q.; Luo, Y. X.; Jin, H. R.; Zhou, J.; Zhai, T. Y.; Wang, D. S. et al. Scalable synthesis of 2D Mo2C and thickness-dependent hydrogen evolution on its basal plane and edges. Adv. Mater., 2023, 35, 2209954.

    Article  CAS  Google Scholar 

  22. Li, Q.; Liu, K. S.; Gui, S. W.; Wu, J. B.; Li, X. G.; Li, Z. F.; Jin, H. R.; Yang, H.; Hu, Z. M.; Liang, W. X. et al. Cobalt doping boosted electrocatalytic activity of CaMn3O6 for hydrogen evolution reaction. Nano Res. 2022, 15, 2870–2876.

    Article  CAS  ADS  Google Scholar 

  23. Zhou, N.; Yang, R.; Zhai, T. Two-dimensional non-layered materials. Mater. Today Nano 2019, 8, 100051.

    Article  Google Scholar 

  24. Huang, L.; Hu, Z. M.; Jin, H. R.; Wu, J. B.; Liu, K. S.; Xu, Z. H.; Wan, J.; Zhou, H.; Duan, J. J.; Hu, B. et al. Salt-assisted synthesis of 2D materials. Adv. Funct. Mater. 2020, 30, 1908486.

    Article  CAS  Google Scholar 

  25. Li, Q.; Wu, J. B.; Wu, T.; Jin, H. R.; Zhang, N.; Li, J.; Liang, W. X.; Liu, M. L.; Huang, L.; Zhou, J. Phase engineering of atomically thin perovskite oxide for highly active oxygen evolution. Adv. Funct. Mater. 2021, 31, 2102002.

    Article  CAS  Google Scholar 

  26. Xiao, X.; Song, H. B.; Lin, S. Z.; Zhou, Y.; Zhan, X. J.; Hu, Z. M.; Zhang, Q.; Sun, J. Y.; Yang, B.; Li, T. Q. et al. Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 2016, 7, 11296.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Zhang, J.; Fan, X. Y.; Meng, X. D.; Zhou, J.; Wang, M. Y.; Chen, S.; Cao, Y. W.; Chen, Y.; Bielawski, C. W.; Geng, J. X. Ice-templated large-scale preparation of two-dimensional sheets of conjugated polymers: Thickness-independent flexible supercapacitance. ACS Nano 2021, 15, 8870–8882.

    Article  CAS  PubMed  Google Scholar 

  28. Li, W.; Wang, K. L.; Cheng, S. J.; Jiang, K. A two-dimensional hybrid of SbOx nanoplates encapsulated by carbon flakes as a high performance sodium storage anode. J. Mater. Chem. A 2017, 5, 1160–1167.

    Article  CAS  Google Scholar 

  29. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Peng, L. L.; Xiong, P.; Ma, L.; Yuan, Y. F.; Zhu, Y.; Chen, D. H.; Luo, X. Y.; Lu, J.; Amine, K.; Yu, G. H. Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nat. Commun. 2017, 8, 15139.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  31. Chen, D. H.; Peng, L. L.; Yuan, Y. F.; Zhu, Y.; Fang, Z. W.; Yan, C. S.; Chen, G.; Shahbazian-Yassar, R.; Lu, J.; Amine, K. et al. Two-dimensional holey Co3O4 nanosheets for high-rate alkali-ion batteries: From rational synthesis to in situ probing. Nano Lett. 2017, 17, 3907–3913.

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Wang, D.; Zhou, W. W.; Zhang, R.; Zeng, J. J.; Du, Y.; Qi, S.; Cong, C. X.; Ding, C. Y.; Huang, X. X.; Wen, G. W. et al. Mass production of large-sized, nonlayered 2D nanosheets: Their directed synthesis by a rapid “gel-blowing” strategy, and applications in Li/Na storage and catalysis. Adv. Mater. 2018, 30, 1803569.

    Article  Google Scholar 

  33. Liu, K. S.; Jin, H. R.; Huang, L. W.; Luo, Y. X.; Zhu, Z. H.; Dai, S. M.; Zhuang, X. Y.; Wang, Z. D.; Huang, L.; Zhou, J. Puffing ultrathin oxides with nonlayered structures. Sci. Adv 2022, 8, eabn2030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q. et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618.

    Article  CAS  PubMed  Google Scholar 

  35. Wang, M.; Liu, J. X.; Guo, C. M.; Gao, X. S.; Gong, C. H.; Wang, Y.; Liu, B.; Li, X. X.; Gurzadyan, G. G.; Sun, L. C. Metal-organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO2: The role of the morphology effect. J. Mater. Chem. A 2018, 6, 4768–4775.

    Article  CAS  Google Scholar 

  36. Zhan, G. W.; Zeng, H. C. ZIF-67-derived nanoreactors for controlling product selectivity in CO2 Hydrogenation. ACS Catal. 2017, 7, 7509–7519.

    Article  CAS  Google Scholar 

  37. Yin, W. J.; Weng, B. C.; Ge, J.; Sun, Q. D.; Li, Z. Z.; Yan, Y. F. Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ. Sci. 2019, 12, 442–462.

    Article  CAS  Google Scholar 

  38. Vasala, S.; Karppinen, M. A2B′B″O6 perovskites: A review. Prog. Solid State Chem. 2015, 43, 1–36.

    Article  CAS  Google Scholar 

  39. Aso, R.; Kan, D.; Shimakawa, Y.; Kurata, H. Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Sci. Rep. 2013, 3, 2214.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  40. Cheng, Q. Q.; Han, S. B.; Mao, K.; Chen, C.; Yang, L. J.; Zou, Z. Q.; Gu, M.; Hu, Z.; Yang, H. Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy 2018, 52, 485–493.

    Article  CAS  Google Scholar 

  41. Wu, J. B.; Zhou, H.; Li, Q.; Chen, M.; Wan, J.; Zhang, N.; Xiong, L. K.; Li, S.; Xia, B. Y.; Feng, G.; Liu, M. L.; Huang, L. Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 2019, 9, 1900149.

    Article  Google Scholar 

  42. Yu, P.; Wang, L.; Sun, F. F.; Xie, Y.; Liu, X.; Ma, J. Y.; Wang, X. W.; Tian, C. G.; Li, J. H.; Fu, H. G. Co nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn-air batteries. Adv. Mater. 2019, 31, 1901666.

    Article  Google Scholar 

  43. Patil, R.; Kumar, N.; Bhattacharjee, S.; Wu, H. Y.; Han, P. C.; Matsagar, B. M.; Wu, K. C. W.; Salunkhe, R. R.; Bhaumik, A.; Dutta, S. Influence of catalase encapsulation on cobalt@nanoporous carbon with multiwall shell for supercapacitor and polyurethane synthesis using carbon dioxide. Chem. Eng. J. 2023, 453, 139874.

    Article  CAS  Google Scholar 

  44. Hu, L. B.; Xu, Z.; He, P. J.; Wang, X. G.; Tian, Z. Q.; Yuan, H. F.; Yu, F.; Dai, B. Zinc and nitrogen-doped carbon in-situ wrapped ZnO nanoparticles as a high-activity catalyst for acetylene acetoxylation. Catal. Lett. 2020, 150, 1155–1162.

    Article  CAS  Google Scholar 

  45. Song, H. X.; Fang, G. Q.; Gao, Z. H.; Su, Y.; Yan, X. R.; Lin, J.; Wang, W. H.; Ren, W. Z.; Wei, H. S. In situ transformation of ZIF-8 into porous overlayer on Ru/ZnO for enhanced hydrogenation catalysis. ACS Appl. Mater. Interfaces 2022, 14, 12295–12303.

    Article  CAS  PubMed  Google Scholar 

  46. Yan, L.; Xu, Z. Y.; Hu, W. K.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Formation of sandwiched leaf-like CNTs-Co/ZnCo2O4@NC-CNTs nanohybrids for high-power-density rechargeable Zn-air batteries. Nano Energy 2021, 82, 105710.

    Article  CAS  Google Scholar 

  47. Qin, J. N.; Wang, S. B.; Wang, X. C. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Appl. Catal. B: Environ. 2017, 209, 476–482.

    Article  CAS  Google Scholar 

  48. Pattengale, B.; Yang, S. Z.; Lee, S.; Huang, J. F. Mechanistic probes of zeolitic imidazolate framework for photocatalytic application. ACS Catal. 2017, 7, 8446–8453.

    Article  CAS  Google Scholar 

  49. Sun, S. N.; Sun, Y. M.; Zhou, Y.; Xi, S. B.; Ren, X.; Huang, B. C.; Liao, H. B.; Wang, L. P.; Du, Y. H. et al. Shifting oxygen charge towards octahedral metal: A way to promote water oxidation on cobalt spinel oxides. Angew. Chem., Int. Ed. 2019, 131, 6103–6108.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2022YFA1203500), the National Natural Science Foundation of China (Nos. 51972124 and 51902115), and the Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing (No. 223009025). We wish to thank the facility support from the Center for Nanoscale Characterization & Devices, WNLO of Huazhong University of Science and Technology (HUST) and the Analytical and Testing Center of HUST. The authors would like to thank Binbin Shuai from Shiyanjia Lab (www.shiyanjia.com) for the EXAFS analysis. This manuscript is dedicated to the memory of Prof. Jun Zhou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Wu, J., Li, Q. et al. Molten metal-organic complex to synthesize versatile ultrathin non-layered oxides. Nano Res. 17, 3147–3155 (2024). https://doi.org/10.1007/s12274-023-6070-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6070-7

Keywords

Navigation