Skip to main content
Log in

Assembly of highly efficient aqueous light-harvesting system from sequence-defined peptoids for cytosolic microRNA detection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Precisely controlled spatial distributions of artificial light-harvesting systems in aqueous media are of significant importance for mimicking natural light-harvesting systems; however, they are often restrained by the solubility and the aggregation-caused quenching effect of the hydrophobic chromophores. Herein, we report one highly efficient artificial light-harvesting system based on peptoid nanotubes that mimic the hierarchical cylindrical structure of natural systems. The high crystallinity of these nanotubes enabled the organization of arrays of donor chromophores with precisely controlled spatial distributions, favoring an efficient Förster resonance energy transfer (FRET) process in aqueous media. This FRET system exhibits an extremely high efficiency of 98.6% with a fluorescence quantum yield of 40% and an antenna effect of 29.9. We further demonstrated the use of this artificial light-harvesting system for quantifying miR-210 within cancer cells. The fluorescence intensity ratio of donor to acceptor is linearly related to the concentration of intercellular miR-210 in the range of 3.3–156 copies/cell. Such high sensitivity in intracellular detection of miR-210 using this artificial light-harvesting system offers a great opportunity and pathways for biological imaging and detection, and for the further creation of microRNA (miRNA) toolbox for quantitative epigenetics and personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McDermott, G.; Prince, S. M.; Freer, A. A.; Hawthornthwaite-Lawless, A. M.; Papiz, M. Z.; Cogdell, R. J.; Isaacs, N. W. Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 1995, 374, 517–521.

    Article  CAS  ADS  Google Scholar 

  2. Huh, J.; Saikin, S. K.; Brookes, J. C.; Valleau, S.; Fujita, T.; Aspuru-Guzik, A. Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria. J. Am. Chem. Soc. 2014, 136, 2048–2057.

    Article  CAS  PubMed  Google Scholar 

  3. Hu, X. C.; Damjanović, A.; Ritz, T.; Schulten, K. Architecture and mechanism of the light-harvesting apparatus of purple bacteria. Proc. Natl. Acad. Sci. USA 1998, 95, 5935–5941.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  4. Scholes, G. D.; Fleming, G. R.; Olaya-Castro, A.; van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 2011, 3, 763–774.

    Article  CAS  PubMed  Google Scholar 

  5. Chmeliov, J.; Trinkunas, G.; van Amerongen, H.; Valkunas, L. Light harvesting in a fluctuating antenna. J. Am. Chem. Soc. 2014, 136, 8963–8972.

    Article  CAS  PubMed  Google Scholar 

  6. Tian, Y. X.; Camacho, R.; Thomsson, D.; Reus, M.; Holzwarth, A. R.; Scheblykin, I. G. Organization of bacteriochlorophylls in individual chlorosomes from Chlorobaculum tepidum studied by 2-dimensional polarization fluorescence microscopy. J. Am. Chem. Soc. 2011, 133, 17192–17199.

    Article  CAS  PubMed  Google Scholar 

  7. Dostál, J.; Mančal, T.; Augulis, R. N.; Vácha, F.; Pšenčík, J.; Zigmantas, D. Two-dimensional electronic spectroscopy reveals ultrafast energy diffusion in chlorosomes. J. Am. Chem. Soc. 2012, 134, 11611–11617.

    Article  PubMed  Google Scholar 

  8. Malý, P.; Gruber, J. M.; Cogdell, R. J.; Mančal, T.; van Grondelle, R. Ultrafast energy relaxation in single light-harvesting complexes. Proc. Natl. Acad. Sci. USA 2016, 113, 2934–2939.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  9. Li, J. J.; Chen, Y.; Yu, J.; Cheng, N.; Liu, Y. A supramolecular artificial light-harvesting system with an ultrahigh antenna effect. Adv. Mater. 2017, 29, 1701905.

    Article  Google Scholar 

  10. Winiger, C. B.; Li, S. G.; Kumar, G. R.; Langenegger, S. M.; Häner, R. Long-distance electronic energy transfer in light-harvesting supramolecular polymers. Angew. Chem., Int. Ed. 2014, 53, 13609–13613.

    Article  CAS  Google Scholar 

  11. Choi, M. S.; Yamazaki, T.; Yamazaki, I.; Aida, T. Bioinspired molecular design of light-harvesting multiporphyrin arrays. Angew. Chem., Int. Ed. 2003, 43, 150–158.

    Article  Google Scholar 

  12. Chen, P. Z.; Weng, Y. X.; Niu, L. Y.; Chen, Y. Z.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Light-harvesting systems based on organic nanocrystals to mimic chlorosomes. Angew. Chem., Int. Ed. 2016, 55, 2759–2763.

    Article  CAS  Google Scholar 

  13. Wang, J.; Liu, K.; Xing, R. R.; Yan, X. H. Peptide self-assembly: Thermodynamics and kinetics. Chem. Soc. Rev. 2016, 45, 5589–5604.

    Article  CAS  PubMed  Google Scholar 

  14. Levin, A.; Hakala, T. A.; Schnaider, L.; Bernardes, G. J. L.; Gazit, E.; Knowles, T. P. J. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 2020, 4, 615–634.

    Article  CAS  Google Scholar 

  15. De Santis, E.; Ryadnov, M. G. Peptide self-assembly for nanomaterials: The old new kid on the block. Chem. Soc. Rev. 2015, 44, 8288–8300.

    Article  CAS  PubMed  Google Scholar 

  16. Shao, L.; Ma, J. R.; Prelesnik, J. L.; Zhou, Y. C.; Nguyen, M.; Zhao, M. F.; Jenekhe, S. A.; Kalinin, S. V.; Ferguson, A. L.; Pfaendtner, J. et al. Hierarchical materials from high information content macromolecular building blocks: Construction, dynamic interventions, and prediction. Chem. Rev. 2022, 122, 17397–17478.

    Article  CAS  PubMed  Google Scholar 

  17. Song, Q.; Goia, S.; Yang, J.; Hall, S. C. L.; Staniforth, M.; Stavros, V. G.; Perrier, S. Efficient artificial light-harvesting system based on supramolecular peptide nanotubes in water. J. Am. Chem. Soc. 2021, 143, 382–389.

    Article  CAS  PubMed  Google Scholar 

  18. Zou, Q. L.; Liu, K.; Abbas, M.; Yan, X. H. Peptide-modulated self-assembly of chromophores toward biomimetic light-harvesting nanoarchitectonics. Adv. Mater. 2016, 28, 1031–1043.

    Article  CAS  PubMed  Google Scholar 

  19. Li, Z. L.; Cai, B.; Yang, W. C.; Chen, C. L. Hierarchical nanomaterials assembled from peptoids and other sequence-defined synthetic polymers. Chem. Rev. 2021, 121, 14031–14087.

    Article  CAS  PubMed  Google Scholar 

  20. Cai, B.; Li, Z. L.; Chen, C. L. Programming amphiphilic peptoid oligomers for hierarchical assembly and inorganic crystallization. Acc. Chem. Res. 2021, 54, 81–91.

    Article  CAS  PubMed  Google Scholar 

  21. Jiao, F.; Wu, X. P.; Jian, T. Y.; Zhang, S.; Jin, H. B.; He, P. G.; Chen, C. L.; De Yoreo, J. J. Hierarchical assembly of peptoid-based cylindrical micelles exhibiting efficient resonance energy transfer in aqueous solution. Angew. Chem., Int. Ed. 2019, 58, 12223–12230.

    Article  CAS  Google Scholar 

  22. Wang, M. M.; Song, Y.; Zhang, S.; Zhang, X.; Cai, X. L.; Lin, Y. H.; De Yoreo, J. J.; Chen, C. L. Programmable two-dimensional nanocrystals assembled from POSS-containing peptoids as efficient artificial light-harvesting systems. Sci. Adv. 2021, 7, eabg1448.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Capretti, A.; Ringsmuth, A. K.; van Velzen, J. F.; Rosnik, A.; Croce, R.; Gregorkiewicz, T. Nanophotonics of higher-plant photosynthetic membranes. Light: Sci. Appl. 2019, 8, 5.

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Ruban, A. V.; Johnson, M. P.; Duffy, C. D. P. Natural light harvesting: Principles and environmental trends. Energy Environ. Sci. 2011, 4, 1643–1650.

    Article  CAS  Google Scholar 

  25. Mirkovic, T.; Ostroumov, E. E.; Anna, J. M.; van Grondelle, R.; Govindjee; Scholes, G. D. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 2017, 117, 249–293.

    Article  CAS  PubMed  Google Scholar 

  26. Leishman, C. W.; McHale, J. L. Light-harvesting properties and morphology of porphyrin nanostructures depend on ionic species inducing aggregation. J. Phys. Chem. C 2015, 119, 28167–28181.

    Article  CAS  Google Scholar 

  27. Eisele, D. M.; Cone, C. W.; Bloemsma, E. A.; Vlaming, S. M.; van der Kwaak, C. G. F.; Silbey, R. J.; Bawendi, M. G.; Knoester, J.; Rabe, J. P.; Vanden Bout, D. A. Utilizing redox-chemistry to elucidate the nature of exciton transitions in supramolecular dye nanotubes. Nat. Chem. 2012, 4, 655–662.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, D. P.; Liu, Y. N.; Fan, Y. J.; Yu, C. Y.; Zheng, Y. L.; Jin, H. B.; Fu, L.; Zhou, Y. F.; Yan, D. Y. Hierarchical self-assembly of a dandelion-like supramolecular polymer into nanotubes for use as highly efficient aqueous light-harvesting systems. Adv. Funct. Mater. 2016, 26, 7652–7661.

    Article  CAS  Google Scholar 

  29. Wang, K. Y.; Velmurugan, K.; Li, B.; Hu, X. Y. Artificial light-harvesting systems based on macrocycle-assisted supramolecular assembly in aqueous media. Chem. Commun. 2021, 57, 13641–13654.

    Article  CAS  Google Scholar 

  30. Löhner, A.; Kunsel, T.; Röhr, M. I. S.; Jansen, T. L. C.; Sengupta, S.; Würthner, F.; Knoester, J.; Köhler, J. Spectral and structural variations of biomimetic light-harvesting nanotubes. J. Phys. Chem. Lett. 2019, 10, 2715–2724.

    Article  PubMed  Google Scholar 

  31. Li, Z. L.; Tran, D. K.; Nguyen, M.; Jian, T. Y.; Yan, F.; Jenekhe, S. A.; Chen, C. L. Amphiphilic peptoid-directed assembly of oligoanilines into highly crystalline conducting nanotubes. Macromol. Rapid Commun. 2022, 43, 2100639.

    Article  CAS  Google Scholar 

  32. Cai, X. L.; Wang, M. M.; Mu, P.; Jian, T. Y.; Liu, D.; Ding, S. C.; Luo, Y. N.; Du, D.; Song, Y.; Chen, C. L. et al. Sequence-defined nanotubes assembled from IR780-conjugated peptoids for chemophototherapy of malignant glioma. Research 2021, 2021, 9861384.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Luo, Y. N.; Song, Y.; Wang, M. M.; Jian, T. Y.; Ding, S. C.; Mu, P.; Liao, Z. H.; Shi, Q. R.; Cai, X. L.; Jin, H. B. et al. Bioinspired peptoid nanotubes for targeted tumor cell imaging and chemophotodynamic therapy. Small 2019, 15, 1902485.

    Article  CAS  Google Scholar 

  34. Jin, H. B.; Jian, T. Y.; Ding, Y. H.; Chen, Y. L.; Mu, P.; Wang, L.; Chen, C. L. Solid-phase synthesis of three-armed star-shaped peptoids and their hierarchical self-assembly. Biopolymers 2019, 110, e23258.

    Article  PubMed  Google Scholar 

  35. Jin, H. B.; Ding, Y. H.; Wang, M. M.; Song, Y.; Liao, Z. H.; Newcomb, C. J.; Wu, X. P.; Tang, X. Q.; Li, Z.; Lin, Y. H. et al. Designable and dynamic single-walled stiff nanotubes assembled from sequence-defined peptoids. Nat. Commun. 2018, 9, 270.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  36. Sun, J.; Jiang, X.; Lund, R.; Downing, K. H.; Balsara, N. P.; Zuckermann, R. N. Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles. Proc. Natl. Acad. Sci. USA 2016, 113, 3954–3959.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Sun, Y. S.; Rombola, C.; Jyothikumar, V.; Periasamy, A. Förster resonance energy transfer microscopy and spectroscopy for localizing protein–protein interactions in living cells. Cytom. Part A 2013, 83, 780–793.

    Article  Google Scholar 

  38. Ge, J.; Hu, Y.; Deng, R. J.; Li, Z. H.; Zhang, K. X.; Shi, M. L.; Yang, D.; Cai, R.; Tan, W. H. Highly sensitive microRNA detection by coupling nicking-enhanced rolling circle amplification with MoS2 quantum dots. Anal. Chem. 2020, 92, 13588–13594.

    Article  CAS  PubMed  Google Scholar 

  39. Li, J. X.; Cai, R.; Tan, W. H. A novel ECL sensing system for ultrahigh sensitivity miRNA-21 detection based on catalytic hairpin assembly cascade nonmetallic SPR effect. Anal. Chem. 2022, 94, 12280–12285.

    Article  CAS  PubMed  Google Scholar 

  40. Wang, F. T.; Cai, R.; Tan, W. H. Self-powered biosensor for a highly efficient and ultrasensitive dual-biomarker assay. Anal. Chem. 2023, 95, 6046–6052.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, F. T.; Hou, Y. Y.; Tan, X. C.; Huang, K. J.; Xu, J.; Cai, R. Real-time multiple signal amplification self-powered biosensing platform for ultrasensitive detection of microRNA. Biosens. Bioelectron. 2023, 222, 114933.

    Google Scholar 

  42. Wang, F. T.; Yang, H. F.; Wu, J. W.; Lyu, Y. F.; Huang, K. J.; Cai, R.; Tan, W. H. An “on–off” self-powered biosensor via GOD activated signal transduction for ultrasensitive detection of multiple biomarkers. Chem. Eng. J. 2023, 468, 143732.

    Article  CAS  Google Scholar 

  43. Jian, T. Y.; Zhou, Y. C.; Wang, P. P.; Yang, W. C.; Mu, P.; Zhang, X.; Zhang, X.; Chen, C. L. Highly stable and tunable peptoid/hemin enzymatic mimetics with natural peroxidase-like activities. Nat. Commun. 2022, 13, 3025.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Cai, Y. P.; Zhang, H. X.; Xu, A. W.; Su, C. Y.; Chen, C. L.; Liu, H. Q.; Zhang, L.; Kang, B. S. Self-assembly of silver(I) polymers with single strand double-helical structures containing the ligand O,O-bis(8-quinolyl)-1,8-dioxaoctane. J. Chem. Soc., Dalton Trans., in press, https://doi.org/10.1039/B102525M.

  45. Chen, C. L.; Tan, H. Y.; Yao, J. H.; Wan, Y. Q.; Su, C. Y. Disilver(I) rectangular-shaped metallacycles: X-ray crystal structure and dynamic behavior in solution. Inorg. Chem. 2005, 44, 8510–8520.

    Article  CAS  PubMed  Google Scholar 

  46. Chen, C. L.; Beatty, A. M. Guest inclusion and structural dynamics in 2D hydrogen-bonded metal-organic frameworks. J. Am. Chem. Soc. 2008, 130, 17222–17223.

    Article  CAS  PubMed  Google Scholar 

  47. Guy, J.; Caron, K.; Dufresne, S.; Michnick, S. W.; Skene; Keillor, J. W. Convergent preparation and photophysical characterization of dimaleimide dansyl fluorogens: Elucidation of the maleimide fluorescence quenching mechanism. J. Am. Chem. Soc. 2007, 129, 11969–11977.

    Article  CAS  PubMed  Google Scholar 

  48. Chen, Z. J.; Lohr, A.; Saha-Möller, C. R.; Würthner, F. Self-assembled π-stacks of functional dyes in solution: Structural and thermodynamic features. Chem. Soc. Rev. 2009, 38, 564–584.

    Article  CAS  PubMed  Google Scholar 

  49. Liu, Y. N.; Jin, J. Y.; Deng, H. P.; Li, K.; Zheng, Y. L.; Yu, C. Y.; Zhou, Y. F. Protein-framed multi-porphyrin micelles for a hybrid natural-artificial light-harvesting nanosystem. Angew. Chem., Int. Ed. 2016, 55, 7952–7957.

    Article  CAS  Google Scholar 

  50. Guo, S. W.; Song, Y. S.; He, Y. L.; Hu, X. Y.; Wang, L. Y. Highly efficient artificial light-harvesting systems constructed in aqueous solution based on supramolecular self-assembly. Angew. Chem., Int. Ed. 2018, 57, 3163–3167.

    Article  CAS  Google Scholar 

  51. Sun, G. P.; Qian, W. R.; Jiao, J. M.; Han, T. T.; Shi, Y. K.; Hu, X. Y.; Wang, L. Y. A highly efficient artificial light-harvesting system with two-step sequential energy transfer based on supramolecular self-assembly. J. Mater. Chem. A 2020, 8, 9590–9596.

    Article  CAS  Google Scholar 

  52. Cheng, N.; Song, Y.; Fu, Q. Q.; Du, D.; Luo, Y. B.; Wang, Y.; Xu, W. T.; Lin, Y. H. Aptasensor based on fluorophore-quencher nanopair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosens. Bioelectron. 2018, 117, 75–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, J.; Wang, J. L.; Liu, S. Y.; Xie, N. L.; Quan, K.; Yang, Y. J.; Yang, X. H.; Huang, J.; Wang, K. M. Amplified FRET nanoflares: An endogenous mRNA-powered nanomachine for intracellular microRNA imaging. Angew. Chem., Int. Ed. 2020, 59, 20104–20111.

    Article  CAS  Google Scholar 

  54. Ye, S. J.; Li, X. X.; Wang, M. L.; Tang, B. Fluorescence and SERS imaging for the simultaneous absolute quantification of multiple miRNAs in living cells. Anal. Chem. 2017, 89, 5124–5130.

    Article  CAS  PubMed  Google Scholar 

  55. Degliangeli, F.; Kshirsagar, P.; Brunetti, V.; Pompa, P. P.; Fiammengo, R. Absolute and direct microRNA quantification using DNA-gold nanoparticle probes. J. Am. Chem. Soc. 2014, 136, 2264–2267.

    Article  CAS  PubMed  Google Scholar 

  56. Chan, H. M.; Chan, L. S.; Wong, R. N. S.; Li, H. W. Direct quantification of single-molecules of microRNA by total internal reflection fluorescence microscopy. Anal. Chem. 2010, 82, 6911–6918.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The synthesis and characterizations of peptoid materials were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under an award FWP 65357 at Pacific Northwest National Laboratory (PNNL). Y. L. would like to acknowledge the Cougar Cage Fund for the work of biological imaging and detection of microRNA. Development of peptoid synthesis capabilities was supported by the Materials Synthesis and Simulation Across Scales (MS3) Initiative through the Laboratory Directed Research and Development (LDRD) program at PNNL. XRD work was conducted at the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory, which was supported by the Office of Science (No. DE-AC02-05CH11231). PNNL is multi-program national laboratory operated for Department of Energy by Battelle (No. DE-AC05-76RL01830).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuehe Lin or Chun-Long Chen.

Electronic Supplementary Material

12274_2023_6008_MOESM1_ESM.pdf

Assembly of highly efficient aqueous light-harvesting system from sequence-defined peptoids for cytosolic microRNA detection

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Cai, X., Wang, M. et al. Assembly of highly efficient aqueous light-harvesting system from sequence-defined peptoids for cytosolic microRNA detection. Nano Res. 17, 788–796 (2024). https://doi.org/10.1007/s12274-023-6008-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6008-0

Keywords

Navigation