Skip to main content
Log in

Progress and prospect of Pt-based catalysts for electrocatalytic hydrogen oxidation reactions

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To achieve the goals of the peak carbon dioxide emissions and carbon neutral, the development and utilization of sustainable clean energy are extremely important. Hydrogen fuel cells are an important system for converting hydrogen energy into electrical energy. However, the slow hydrogen oxidation reaction (HOR) kinetics under alkaline conditions has limited its development. Therefore, elucidating the catalytic mechanism of HOR in acidic and alkaline media is of great significance for the construction of highly active and stable catalysts. In terms of practicality, Pt is still the primary choice for commercialization of fuel cells. On the above basis, we first introduced the hydrogen binding energy theory and bifunctional theory used to describe the HOR activity, as well as the pH dependence. After that, the rational design strategies of Pt-based HOR catalysts were systematically classified and summarized from the perspective of activity descriptors. In addition, we further emphasized the importance of theoretical simulations and in situ characterization in revealing the HOR mechanism, which is crucial for the rational design of catalysts. Moreover, the practical application of Pt-based HOR catalysts in fuel cells was also presented. In closing, the current challenges and future development directions of HOR catalysts were discussed. This review will provide a deep understanding for exploring the mechanism of highly efficient HOR catalysts and the development of fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adabi, H.; Shakouri, A.; Ul Hassan, N.; Varcoe, J. R.; Zulevi, B.; Serov, A.; Regalbuto, J. R.; Mustain, W. E. High-performing commercial Fe-N-C cathode electrocatalyst for anion-exchange membrane fuel cells. Nat. Energy 2021, 6, 834–843.

    Article  ADS  CAS  Google Scholar 

  2. Zhang, X.; Yu, P.; Xing, G. Y.; Xie, Y.; Zhang, X. X.; Zhang, G. Y.; Sun, F. F.; Wang, L. Iron single atoms-assisted cobalt nitride nanoparticles to strengthen the cycle life of rechargeable Zn-air battery. Small 2022, 18, 2205228.

    Article  CAS  Google Scholar 

  3. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  PubMed  Google Scholar 

  4. Huang, L.; Zaman, S.; Wang, Z. T.; Niu, H. T.; You, B.; Xia, B. Y. Synthesis and application of platinum-based hollow nanoframes for direct alcohol fuel cells. Acta Phys. Chim. Sin. 2021, 37, 2009035.

    Google Scholar 

  5. Fu, X.; Li, N.; Ren, B.; Jiang, G.; Liu, Y.; Hassan, F. M.; Su, D.; Zhu, J.; Yang, L.; Bai, Z.; Cano, Z. P.; Yu, A.; Chen, Z. Tailoring FeN4 sites with edge enrichment for boosted oxygen reduction performance in proton exchange membrane fuel cell. Adv. Energy Mater. 2019, 9, 1803737.

    Article  Google Scholar 

  6. Duan, X.; Cao, F.; Ding, R.; Li, X. K.; Li, Q. B.; Aisha, R.; Zhang, S. Q.; Hua, K.; Rui, Z. Y.; Wu, Y. K. et al. Cobalt-doping stabilized active and durable sub-2 nm Pt nanoclusters for low-Pt-loading PEMFC cathode. Adv. Energy Mater. 2022, 12, 2103144.

    Article  CAS  Google Scholar 

  7. Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed. 2016, 55, 2650–2676.

    Article  CAS  Google Scholar 

  8. Xu, W. J.; Sun, Y. D.; Zhou, J. Q.; Cao, M. Q.; Luo, J.; Mao, H. L.; Hu, P. F.; Gu, H. F.; Zhai, H. Z.; Shang, H. et al. Coordinatively unsaturated single Co atoms immobilized on C2N for efficient oxygen reduction reaction. Nano Res. 2023, 16, 2294–2301.

    Article  ADS  CAS  Google Scholar 

  9. Niu, H. T.; Xia, C. F.; Huang, L.; Zaman, S.; Maiyalagan, T.; Guo, W.; You, B.; Xia, B. Y. Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis. Chin. J. Catal. 2022, 43, 1459–1472.

    Article  CAS  Google Scholar 

  10. Setzler, B. P.; Zhuang, Z. B.; Wittkopf, J. A.; Yan, Y. S. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells. Nat. Nanotechnol. 2016, 11, 1020–1025.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Song, Z. X.; Banis, M. N.; Liu, H. S.; Zhang, L.; Zhao, Y.; Li, J. J.; Doyle-Davis, K.; Li, R. Y.; Knights, S.; Ye, S. Y. et al. Ultralow loading and high-performing Pt catalyst for a polymer electrolyte membrane fuel cell anode achieved by atomic layer deposition. ACS Catal. 2019, 9, 5365–5374.

    Article  CAS  Google Scholar 

  12. Bhowmik, T.; Kundu, M. K.; Barman, S. Palladium nanoparticle-graphitic carbon nitride porous synergistic catalyst for hydrogen evolution/oxidation reactions over a broad range of pH and correlation of its catalytic activity with measured hydrogen binding energy. ACS Catal. 2016, 6, 1929–1941.

    Article  CAS  Google Scholar 

  13. Zhou, Y. Y.; Xie, Z. Y.; Jiang, J. X.; Wang, J.; Song, X. Y.; He, Q.; Ding, W.; Wei, Z. D. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat. Catal. 2020, 3, 454–462.

    Article  CAS  Google Scholar 

  14. Yang, X. L.; Wang, Y.; Wang, X.; Mei, B. B.; Luo, E. G.; Li, Y.; Meng, Q. L.; Jin, Z.; Jiang, Z.; Liu, C. P. et al. CO-tolerant PEMFC anodes enabled by synergistic catalysis between iridium single-atom sites and nanoparticles. Angew. Chem., Int. Ed. 2021, 60, 26177–26183.

    Article  CAS  Google Scholar 

  15. Zhuang, Z. B.; Giles, S. A.; Zheng, J.; Jenness, G. R.; Caratzoulas, S.; Vlachos, D. G.; Yan, Y. S. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. Nat. Commun. 2016, 7, 10141.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhan, C. H.; Xu, Y.; Bu, L. Z.; Zhu, H. Z.; Feng, Y. G.; Yang, T.; Zhang, Y.; Yang, Z. Q.; Huang, B. L.; Shao, Q. et al. Q. Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat. Commun. 2021, 12, 6261.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Duan, Y.; Zhang, X. L.; Gao, F. Y.; Kong, Y.; Duan, Y.; Yang, X. T.; Yu, X. X.; Wang, Y. R.; Qin, S.; Chen, Z. et al. Interfacial engineering of Ni/V2O3 heterostructure catalyst for boosting hydrogen oxidation reaction in alkaline electrolytes. Angew. Chem., Int. Ed. 2023, 62, e202217275.

    Article  CAS  Google Scholar 

  18. Zhang, B. H.; Zhao, G. Q.; Zhang, B. X.; Xia, L. X.; Jiang, Y. Z.; Ma, T. Y.; Gao, M. X.; Sun, W. P.; Pan, H. G. Lattice-confined Ir clusters on Pd nanosheets with charge redistribution for the hydrogen oxidation reaction under alkaline conditions. Adv. Mater. 2021, 33, 2105400.

    Article  CAS  Google Scholar 

  19. Sheng, W. C.; Gasteiger, H. A.; Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes. J. Electrochem. Soc. 2010, 157, B1529–B1536.

    Article  CAS  Google Scholar 

  20. Thompson, S. T.; Peterson, D.; Ho, D.; Papageorgopoulos, D. Perspective—The next decade of AEMFCs: Near-term targets to accelerate applied R&D. J. Electrochem. Soc. 2020, 167, 084514.

    Article  ADS  CAS  Google Scholar 

  21. Firouzjaie, H. A.; Mustain, W. E. Catalytic advantages, challenges, and priorities in alkaline membrane fuel cells. ACS Catal. 2020, 10, 225–234.

    Article  CAS  Google Scholar 

  22. Lafforgue, C.; Chatenet, M.; Dubau, L.; Dekel, D. R. Accelerated stress test of Pt/C nanoparticles in an interface with an anion-exchange membrane—An identical-location transmission electron microscopy study. ACS Catal. 2018, 8, 1278–1286.

    Article  CAS  Google Scholar 

  23. Zadick, A.; Dubau, L.; Sergent, N.; Berthome, G.; Chatenet, M. Huge instability of Pt/C catalysts in alkaline medium. ACS Catal. 2015, 5, 4819–4824.

    Article  CAS  Google Scholar 

  24. Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 2004, 120, 10240–10246.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Lee, D. W.; Choi, D.; Lee, M. J.; Jin, H.; Lee, S.; Jang, I.; Park, H. Y.; Jang, J. H.; Kim, H. J.; Lee, K. Y. et al. Tailoring of Pt island RuO2/C catalysts by galvanic replacement to achieve superior hydrogen oxidation reaction and CO poisoning resistance. ACS Appl. Energy Mater. 2021, 4, 8098–8107.

    Article  CAS  Google Scholar 

  26. Davydova, E. S.; Mukerjee, S.; Jaouen, F.; Dekel, D. R. Electrocatalysts for hydrogen oxidation reaction in alkaline electrolytes. ACS Catal. 2018, 8, 6665–6690.

    Article  CAS  Google Scholar 

  27. Peng, L. X.; Tian, H.; Cui, X. Z.; Su, L.; Meng, G.; Ma, Z. H.; Cao, S. W.; Shi, J. L. Dual synergetic catalytic effects boost hydrogen electric oxidation performance of Pd/W18O49. Nano Res. 2021, 14, 2441–2450.

    Article  ADS  CAS  Google Scholar 

  28. Sheng, W. C.; Myint, M.; Chen, J. G.; Yan, Y. S. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 2013, 6, 1509–1512.

    Article  CAS  Google Scholar 

  29. Angerstein-Kozlowska, H.; Conway, B. E.; Hamelin, A. Electrocatalytic mediation of oxidation of H2 at gold by chemisorbed states of anions. J. Electroanal. Chem. Interfac. Electrochem. 1990, 277, 233–252.

    Article  CAS  Google Scholar 

  30. Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N.; Van Der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 2013, 5, 300–306.

    Article  CAS  PubMed  Google Scholar 

  31. Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  32. Gao, F. Y.; Wang, Y. H.; Yang, Y.; Liao, J.; Duanmu, J. W.; Zhang, X. L.; Niu, Z. Z.; Yang, P. P.; Gao, M. R. Towards reliable assessment of hydrogen oxidation electrocatalysts for anion-exchange membrane fuel cells. Nano Res., in press, https://doi.org/10.1007/s12274-023-5792-x.

  33. St John, S.; Atkinson III, R. W.; Unocic, R. R.; Zawodzinski, T. A. Jr.; Papandrew, A. B. Ruthenium-alloy electrocatalysts with tunable hydrogen oxidation kinetics in alkaline electrolyte. J. Phys. Chem. C 2015, 119, 13481–13487.

    Article  CAS  Google Scholar 

  34. Montero, M. A.; De Chialvo, M. R. G.; Chialvo, A. C. Kinetics of the hydrogen oxidation reaction on nanostructured rhodium electrodes in alkaline solution. J. Power Sources 2015, 283, 181–186.

    Article  ADS  CAS  Google Scholar 

  35. Montero, M. A.; De Chialvo, M. R. G.; Chialvo, A. C. Evaluation of the kinetic parameters of the hydrogen oxidation reaction on nanostructured iridium electrodes in alkaline solution. J. Electroanal. Chem. 2016, 167, 153–159.

    Article  Google Scholar 

  36. Li, J. K.; Ghoshal, S.; Bates, M. K.; Miller, T. E.; Davies, V.; Stavitski, E.; Attenkofer, K.; Mukerjee, S.; Ma, Z. F.; Jia, Q. Y. Experimental proof of the bifunctional mechanism for the hydrogen oxidation in alkaline media. Angew. Chem., Int. Ed. 2017, 56, 15594–15598.

    Article  CAS  Google Scholar 

  37. Elbert, K.; Hu, J.; Ma, Z.; Zhang, Y.; Chen, G. Y.; An, W.; Liu, P.; Isaacs, H. S.; Adzic, R. R.; Wang, J. X. Elucidating hydrogen oxidation/evolution kinetics in base and acid by enhanced activities at the optimized Pt shell thickness on the Ru core. ACS Catal. 2015, 5, 6764–6772.

    Article  CAS  Google Scholar 

  38. Luo, H.; Wang, K.; Lin, F. X.; Lv, F.; Zhou, J. H.; Zhang, W. Y.; Wang, D. W.; Zhang, W. S.; Zhang, Q. H.; Gu, L. et al. Amorphous MoOx with high oxophilicity interfaced with PtMo alloy nanoparticles boosts anti-CO hydrogen electrocatalysis. Adv. Mater., in press, https://doi.org/10.1002/adma.202211854.

  39. Zhao, T. H.; Hu, Y. C.; Gong, M. X.; Lin, R. Q.; Deng, S. F.; Lu, Y.; Liu, X. P.; Chen, Y.; Shen, T.; Hu, Y. Z. et al. Electronic structure and oxophilicity optimization of mono-layer Pt for efficient electrocatalysis. Nano Energy 2020, 74, 104877.

    Article  CAS  Google Scholar 

  40. Yang, F. L.; Bao, X.; Li, P.; Wang, X. W.; Cheng, G. Z.; Chen, S. L.; Luo, W. Boosting hydrogen oxidation activity of Ni in alkaline media through oxygen-vacancy-rich CeO2/Ni heterostructures. Angew. Chem., Int. Ed. 2019, 58, 14179–14183.

    Article  CAS  Google Scholar 

  41. Qiu, Y.; Xin, L.; Li, Y. W.; McCrum, I. T.; Guo, F. M.; Ma, T.; Ren, Y.; Liu, Q.; Zhou, L.; Gu, S. et al. BCC-phased PdCu alloy as a highly active electrocatalyst for hydrogen oxidation in alkaline electrolytes. J. Am. Chem. Soc. 2018, 140, 16580–16588.

    Article  CAS  PubMed  Google Scholar 

  42. Rheinländer, P. J.; Herranz, J.; Durst, J.; Gasteiger, H. A. Kinetics of the hydrogen oxidation/evolution reaction on polycrystalline platinum in alkaline electrolyte reaction order with respect to hydrogen pressure. J. Electrochem. Soc. 2014, 161, F1448–F1457.

    Article  Google Scholar 

  43. Zheng, J.; Yan, Y. S.; Xu, B. J. Correcting the hydrogen diffusion limitation in rotating disk electrode measurements of hydrogen evolution reaction kinetics. J. Electrochem. Soc. 2015, 162, F1470–F1481.

    Article  CAS  Google Scholar 

  44. Durst, J.; Simon, C.; Hasche, F.; Gasteiger, H. A. Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media. J. Electrochem. Soc. 2015, 162, F190–F203.

    Article  CAS  Google Scholar 

  45. Chen, S. L.; Kucernak, A. Electrocatalysis under conditions of high mass transport: Investigation of hydrogen oxidation on single submicron Pt particles supported on carbon. J. Phys. Chem. B 2004, 108, 13984–13994.

    Article  CAS  Google Scholar 

  46. Zoski, C. G. Scanning electrochemical microscopy: Investigation of hydrogen oxidation at polycrystalline noble metal electrodes. J. Phys. Chem. B 2003, 107, 6401–6405.

    Article  CAS  Google Scholar 

  47. Zalitis, C. M.; Kramer, D.; Kucernak, A. R. Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport. Phys. Chem. Chem. Phys. 2013, 15, 4329–4340.

    Article  CAS  PubMed  Google Scholar 

  48. Zhao, R. P.; Yue, X.; Li, Q. H.; Fu, G. T.; Lee, J. M.; Huang, S. M. Recent advances in electrocatalysts for alkaline hydrogen oxidation reaction. Small 2021, 17, 2100391.

    Article  CAS  Google Scholar 

  49. Xiao, F.; Wang, Y. C.; Wu, Z. P.; Chen, G. Y.; Yang, F.; Zhu, S. Q.; Siddharth, K.; Kong, Z. J.; Lu, A. L.; Li, J. C. et al. Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. Adv. Mater. 2021, 33, 2006292.

    Article  CAS  Google Scholar 

  50. Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the Sabatier principle to a predictive theory of transitionmetal heterogeneous catalysis. J. Catal. 2015, 328, 36–42.

    Article  CAS  Google Scholar 

  51. Zhang, H.; Wang, J.; Qin, F. Q.; Liu, H. L.; Wang, C. V-doped Ni3N/Ni heterostructure with engineered interfaces as a bifunctional hydrogen electrocatalyst in alkaline solution: Simultaneously improving water dissociation and hydrogen adsorption. Nano Res. 2021, 14, 3489–3496.

    Article  ADS  CAS  Google Scholar 

  52. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

    Article  Google Scholar 

  53. Zheng, J.; Sheng, W. C.; Zhuang, Z. B.; Xu, B. J.; Yan, Y. S. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2016, 2, e1501602.

  54. Sheng, W. C.; Zhuang, Z. B.; Gao, M. R.; Zheng, J.; Chen, J. G.; Yan, Y. S. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 2015, 6, 5848.

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Zheng, J.; Zhuang, Z. B.; Xu, B. J.; Yan, Y. S. Correlating hydrogen oxidation/evolution reaction activity with the minority weak hydrogen-binding sites on Ir/C catalysts. ACS Catal. 2015, 5, 4449–4455.

    Article  CAS  Google Scholar 

  56. Sheng, W. C.; Bivens, A. P.; Myint, M.; Zhuang, Z. B.; Forest, R. V.; Fang, Q. R.; Chen, J. G.; Yan, Y. S. Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energy Environ. Sci. 2014, 7, 1719–1724.

    Article  CAS  Google Scholar 

  57. Ghoshal, S.; Jia, Q. Y.; Bates, M. K.; Li, J. K.; Xu, C. C.; Gath, K.; Yang, J.; Waldecker, J.; Che, H. Y.; Liang, W. T. et al. Tuning Nb-Pt interactions to facilitate fuel cell electrocatalysis. ACS Catal. 2017, 7, 4936–4946.

    Article  CAS  Google Scholar 

  58. Ni, W. Y.; Wang, T.; Héroguel, F.; Krammer, A.; Lee, S.; Yao, L.; Schüler, A.; Luterbacher, J. S.; Yan, Y. S.; Hu, X. L. An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells. Nat. Mater. 2022, 21, 804–810.

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Wang, K. C.; Yang, H.; Zhang, J. T.; Ren, G. M.; Cheng, T.; Xu, Y.; Huang, X. Q. The exclusive surface and electronic effects of Ni on promoting the activity of Pt towards alkaline hydrogen oxidation. Nano Res. 2022, 15, 5865–5872.

    Article  ADS  CAS  Google Scholar 

  60. McCrum, I. T.; Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 2020, 5, 891–899.

    Article  ADS  CAS  Google Scholar 

  61. Jiang, J. X.; Tao, S. C.; He, Q.; Wang, J.; Zhou, Y. Y.; Xie, Z. Y.; Ding, W.; Wei, Z. D. Interphase-oxidized ruthenium metal with half-filled d-orbitals for hydrogen oxidation in an alkaline solution. J. Mater. Chem. A 2020, 8, 10168–10174.

    Article  CAS  Google Scholar 

  62. Ledezma-Yanez, I.; Wallace, W. D. Z.; Sebastián-Pascual, P.; Climent, V.; Feliu, J. M.; Koper, M. T. M. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2017, 2, 17031.

    Article  ADS  CAS  Google Scholar 

  63. Mu, X. Q.; Liu, S. L.; Chen, L.; Mu, S. C. Alkaline hydrogen oxidation reaction catalysts: Insight into catalytic mechanisms, classification, activity regulation and challenges. Small Struct. 2023, 4, 2200281.

    Article  CAS  Google Scholar 

  64. Giles, S. A.; Wilson, J. C.; Nash, J.; Xu, B. J.; Vlachos, D. G.; Yan, Y. S. Recent advances in understanding the pH dependence of the hydrogen oxidation and evolution reactions. J. Catal. 2018, 367, 328–331.

    Article  CAS  Google Scholar 

  65. Tian, X. Y.; Zhao, P. C.; Sheng, W. C. Hydrogen evolution and oxidation: Mechanistic studies and material advances. Adv. Mater. 2019, 31, 1808066.

    Article  Google Scholar 

  66. Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.

    Article  CAS  Google Scholar 

  67. Schouten, K. J. P.; Van Der Niet, M. J. T. C.; Koper, M. T. M. Impedance spectroscopy of H and OH adsorption on stepped single-crystal platinum electrodes in alkaline and acidic media. Phys. Chem. Chem. Phys. 2010, 12, 15217–15224.

    Article  CAS  PubMed  Google Scholar 

  68. Li, M. T.; Li, L.; Huang, X.; Qi, X. Q.; Deng, M. M.; Jiang, S. K.; Wei, Z. D. Platinum-water interaction induced interfacial water orientation that governs the pH-dependent hydrogen oxidation reaction. J. Phys. Chem. Lett. 2022, 13, 10550–10557.

    Article  CAS  PubMed  Google Scholar 

  69. Shen, L. F.; Lu, B. A.; Li, Y. Y.; Liu, J.; Huangfu, Z. C.; Peng, H.; Ye, J. Y.; Qu, X. M.; Zhang, J. M.; Li, G. et al. Interfacial structure of water as a new descriptor of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22397–22402.

    Article  CAS  Google Scholar 

  70. Karlberg, G. S.; Jaramillo, T. F.; Skúlason, E.; Rossmeisl, J.; Bligaard, T.; Nørskov, J. K. Cyclic voltammograms for H on Pt(111) and Pt(100) from first principles. Phys. Rev. Lett. 2007, 99, 126101.

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Wang, Y. H.; Zheng, S. S.; Yang, W. M.; Zhou, R. Y.; He, Q. F.; Radjenovic, P.; Dong, J. C.; Li, S. N.; Zheng, J. X.; Yang, Z. L. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 2021, 600, 81–85.

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Zheng, J.; Nash, J.; Xu, B. J.; Yan, Y. S. Perspective-towards establishing apparent hydrogen binding energy as the descriptor for hydrogen oxidation/evolution reactions. J. Electrochem. Soc. 2018, 165, H27–H29.

    Article  CAS  Google Scholar 

  73. Cheng, T.; Wang, L.; Merinov, B. V.; Goddard, W. A. Explanation of dramatic pH-dependence of hydrogen binding on noble metal electrode: Greatly weakened water adsorption at high pH. J. Am. Chem. Soc. 2018, 140, 7787–7790.

    Article  CAS  PubMed  Google Scholar 

  74. Li, P.; Jiang, Y. L.; Hu, Y. C.; Men, Y. N.; Liu, Y. W.; Cai, W. B.; Chen, S. L. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 2022, 5, 900–911.

    Article  CAS  Google Scholar 

  75. Dong, Y. T.; Sun, Q. T.; Zhan, C. H.; Zhang, J. T.; Yang, H.; Cheng, T.; Xu, Y.; Hu, Z. W.; Pao, C. W.; Geng, H. B. et al. Lattice and surface engineering of ruthenium nanostructures for enhanced hydrogen oxidation catalysis. Adv. Funct. Mater. 2023, 33, 2210328.

    Article  CAS  Google Scholar 

  76. Li, L. G.; Liu, S. H.; Zhan, C. H.; Wen, Y.; Sun, Z. F.; Han, J. J.; Chan, T. S.; Zhang, Q. B.; Hu, Z. W.; Huang, X. Q. Surface and lattice engineered ruthenium superstructures towards high-performance bifunctional hydrogen catalysis. Energy Environ. Sci. 2023, 16, 157–166.

    Article  Google Scholar 

  77. Yan, B.; Bisbey, R. P.; Alabugin, A.; Surendranath, Y. Mixed electron-proton conductors enable spatial separation of bond activation and charge transfer in electrocatalysis. J. Am. Chem. Soc. 2019, 141, 11115–11122.

    Article  CAS  PubMed  Google Scholar 

  78. Xiao, W. P.; Lei, W.; Wang, J.; Gao, G. Y.; Zhao, T. H.; Cordeiro, M. A. L.; Lin, R. Q.; Gong, M. X.; Guo, X. Y.; Stavitski, E. et al. Tuning the electrocatalytic activity of Pt by structurally ordered PdFe/C for the hydrogen oxidation reaction in alkaline media. J. Mater. Chem. A 2018, 6, 11346–11352.

    Article  CAS  Google Scholar 

  79. Zhao, T. H.; Wang, G. J.; Gong, M. X.; Xiao, D. D.; Chen, Y.; Shen, T.; Lu, Y.; Zhang, J.; Xin, H. L.; Li, Q. et al. Self-optimized ligand effect in L12-PtPdFe intermetallic for efficient and stable alkaline hydrogen oxidation reaction. ACS Catal. 2020, 10, 15207–15216.

    Article  CAS  Google Scholar 

  80. Cong, Y. Y.; Yi, B. L.; Song, Y. J. Hydrogen oxidation reaction in alkaline media: From mechanism to recent electrocatalysts. Nano Energy 2018, 44, 288–303.

    Article  CAS  Google Scholar 

  81. Zhang, Y. W.; Chen, T.; Alia, S.; Pivovar, B. S.; Xu, W. L. Single-molecule nanocatalysis shows in situ deactivation of Pt/C electrocatalysts during the hydrogen-oxidation reaction. Angew. Chem., Int. Ed. 2016, 128, 3138–3142.

    Article  ADS  Google Scholar 

  82. Song, J. D.; Jin, Y. Q.; Zhang, L.; Dong, P. Y.; Li, J. W.; Xie, F. Y.; Zhang, H.; Chen, J.; Jin, Y. S.; Meng, H. et al. Phase-separated Mo-Ni alloy for hydrogen oxidation and evolution reactions with high activity and enhanced stability. Adv. Energy Mater. 2021, 11, 2003511.

    Article  CAS  Google Scholar 

  83. Zhao, T. H.; Li, M. T.; Xiao, D. D.; Yang, X. J.; Li, Q. H.; An, L. L.; Deng, Z. P.; Shen, T.; Gong, M. X.; Chen, Y. et al. Pseudo-Pt monolayer for robust hydrogen oxidation. J. Am. Chem. Soc. 2023, 145, 4088–4097.

    Article  CAS  Google Scholar 

  84. Ma, S. Y.; Ma, T.; Hu, Q.; Yang, H. P.; He, C. X. Ternary PtRuTe alloy nanofibers as an efficient and durable electrocatalyst for hydrogen oxidation reaction in alkaline media. Sci. China Mater. 2022, 65, 3462–3469.

    Article  CAS  Google Scholar 

  85. Wang, M. M.; Wang, M. J.; Zhan, C. H.; Geng, H. B.; Li, Y. H.; Huang, X. Q.; Bu, L. Z. Ultrafine platinum-iridium distorted nanowires as robust catalysts toward bifunctional hydrogen catalysis. J. Mater. Chem. A 2022, 10, 18972–18977.

    Article  CAS  Google Scholar 

  86. Liao, H. G.; Jiang, Y. X.; Zhou, Z. Y.; Chen, S. P.; Sun, S. G. Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. Angew. Chem., Int. Ed. 2008, 120, 9240–9243.

    Article  ADS  Google Scholar 

  87. Liu, S.; Tian, N.; Xie, A. Y.; Du, J. H.; Xiao, J.; Liu, L.; Sun, H. Y.; Cheng, Z. Y.; Zhou, Z. Y.; Sun, S. G. Electrochemically seed-mediated synthesis of sub-10 nm tetrahexahedral Pt nanocrystals supported on graphene with improved catalytic performance. J. Am. Chem. Soc. 2016, 138, 5753–5756.

    Article  CAS  PubMed  Google Scholar 

  88. Hoshi, N.; Asaumi, Y.; Nakamura, M.; Mikita, K.; Kajiwara, R. Structural effects on the hydrogen oxidation reaction on n(111)–(111) surfaces of platinum. J. Phys. Chem. C 2009, 113, 16843–16846.

    Article  CAS  Google Scholar 

  89. Wang, N.; Wang, D. X.; Wu, A. P.; Wang, S. Y.; Li, Z. H.; Jin, C. X.; Dong, Y. M.; Kong, F. Y.; Tian, C. G.; Fu, H. G. Few-layered MoS2 anchored on 2D porous C3N4 nanosheets for Pt-free photocatalytic hydrogen evolution. Nano Res. 2023, 16, 3524–3535.

    Article  ADS  CAS  Google Scholar 

  90. De Luna, P.; Quintero-Bermudez, R.; Dinh, C. T.; Ross, M. B.; Bushuyev, O. S.; Todorović, P.; Regier, T.; Kelley, S. O.; Yang, P. D.; Sargent, E. H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 2018, 1, 103–110.

    Article  CAS  Google Scholar 

  91. Stephens, I. E. L.; Bondarenko, A. S.; Grønbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 2012, 5, 6744–6762.

    Article  CAS  Google Scholar 

  92. Guo, Y.; Hou, B.; Cui, X. Z.; Liu, X. C.; Tong, X. L.; Yang, N. J. Pt atomic layers boosted hydrogen evolution reaction in nonacidic media. Adv. Energy Mater. 2022, 12, 2201548.

    Article  CAS  Google Scholar 

  93. Schwämmlein, J. N.; Stühmeier, B. M.; Wagenbauer, K.; Dietz, H.; Tileli, V.; Gasteiger, H. A.; El-Sayed, H. A. Origin of superior HOR/HER activity of bimetallic Pt-Ru catalysts in alkaline media identified via Ru@Pt core–shell nanoparticles. J. Electrochem. Soc. 2018, 165, H229–H239.

    Article  Google Scholar 

  94. Esposito, D. V.; Hunt, S. T.; Kimmel, Y. C.; Chen, J. G. A new class of electrocatalysts for hydrogen production from water electrolysis: Metal monolayers supported on low-cost transition metal carbides. J. Am. Chem. Soc. 2012, 134, 3025–3033.

    Article  CAS  PubMed  Google Scholar 

  95. Wang, L.; Mahoney, E. G.; Zhao, S.; Yang, B. L.; Chen, J. G. Low loadings of platinum on transition metal carbides for hydrogen oxidation and evolution reactions in alkaline electrolytes. Chem. Commun. 2016, 52, 3697–3700.

    Article  CAS  Google Scholar 

  96. Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  97. Alia, S. M.; Pivovar, B. S.; Yan, Y. S. Platinum-coated copper nanowires with high activity for hydrogen oxidation reaction in base. J. Am. Chem. Soc. 2013, 135, 13473–13478.

    Article  CAS  PubMed  Google Scholar 

  98. Li, X. Y.; Cai, W. Z.; Li, D. S.; Xu, J.; Tao, H. B.; Liu, B. Amorphous alloys for electrocatalysis: The significant role of the amorphous alloy structure. Nano Res. 2023, 16, 4277–4288.

    Article  ADS  CAS  Google Scholar 

  99. Adabi, H.; Shakouri, A.; Zitolo, A.; Asset, T.; Khan, A.; Bohannon, J.; Chattot, R.; Williams, C.; Jaouen, F.; Regalbuto, J. R. et al. Multi-atom Pt and PtRu catalysts for high performance AEMFCs with ultra-low PGM content. Appl. Catal. B Environ. 2023, 325, 122375.

    Article  CAS  Google Scholar 

  100. Wang, H.; Abruña, H. D. Rh and Rh alloy nanoparticles as highly active H2 oxidation catalysts for alkaline fuel cells. ACS Catal. 2019, 9, 5057–5062.

    Article  CAS  Google Scholar 

  101. Zhao, L. M.; Liu, H. J.; Liu, Y. H.; Han, X. N.; Xu, J.; Xing, W.; Guo, W. Y. Mechanistic insights into the hydrogen oxidation reaction on PtNi alloys in alkaline media: A first-principles investigation. ACS Appl. Mater. Interfaces 2020, 12, 40248–40260.

    Article  CAS  PubMed  Google Scholar 

  102. Balbuena, P. B.; Altomare, D.; Vadlamani, N.; Bingi, S.; Agapito, L. A.; Seminario, J. M. Adsorption of O, OH, and H2O on Pt-based bimetallic clusters alloyed with Co, Cr, and Ni. J. Phys. Chem. A 2004, 108, 6378–6384.

    Article  CAS  Google Scholar 

  103. Wang, Y.; Wang, G. W.; Li, G. W.; Huang, B.; Pan, J.; Liu, Q.; Han, J. J.; Xiao, L.; Lu, J. T.; Zhuang, L. Pt-Ru catalyzed hydrogen oxidation in alkaline media: Oxophilic effect or electronic effect. Energy Environ. Sci. 2015, 8, 177–181.

    Article  CAS  Google Scholar 

  104. Wang, G. W.; Li, W. Z.; Wu, N.; Huang, B.; Xiao, L.; Lu, J. T.; Zhuang, L. Unraveling the composition-activity relationship of Pt-Ru binary alloy for hydrogen oxidation reaction in alkaline media. J. Power Sources 2019, 412, 282–286.

    Article  ADS  CAS  Google Scholar 

  105. Lu, S. Q.; Zhuang, Z. B. Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 2017, 139, 5156–5163.

    Article  CAS  PubMed  Google Scholar 

  106. Weber, D. J.; Dosche, C.; Oezaslan, M. Tuning of Pt-Co nanoparticle motifs for enhancing the HOR performance in alkaline media. J. Mater. Chem. A 2021, 9, 15415–15431.

    Article  CAS  Google Scholar 

  107. Yao, Z. C.; Tang, T.; Jiang, Z.; Wang, L.; Hu, J. S.; Wan, L. J. Electrocatalytic hydrogen oxidation in alkaline media: From mechanistic insights to catalyst design. ACS Nano 2022, 16, 5153–5183.

    Article  CAS  PubMed  Google Scholar 

  108. Scofield, M. E.; Zhou, Y. C.; Yue, S. Y.; Wang, L.; Su, D.; Tong, X.; Vukmirovic, M. B.; Adzic, R. R.; Wong, S. S. Role of chemical composition in the enhanced catalytic activity of Pt-based alloyed ultrathin nanowires for the hydrogen oxidation reaction under alkaline conditions. ACS Catal. 2016, 6, 3895–3908.

    Article  CAS  Google Scholar 

  109. Cong, Y. Y.; Chai, C. X.; Zhao, X. W.; Yi, B. L.; Song Y. J. Pt0.25Ru0.75/N-C as highly active and durable electrocatalysts toward alkaline hydrogen oxidation reaction. Adv. Mater. Interfaces 2020, 7, 2000310.

    Article  CAS  Google Scholar 

  110. Sun, Y. J.; Zhang, W. S.; Zhang, Q. H.; Li, Y. J.; Gu, L.; Guo, S. J. A general approach to high-entropy metallic nanowire electrocatalysts. Matter 2023, 6, 193–205.

    Article  CAS  Google Scholar 

  111. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

    Article  CAS  Google Scholar 

  112. Xu, S.; Niu, M.; Zhao, G. W.; Ming, S. J.; Li, X. Y.; Zhu, Q. L.; Ding, L. X.; Kim, M.; Alothman, A. A.; Mushab, M. S. S. et al. Size control and electronic manipulation of Ru catalyst over B, N co-doped carbon network for high-performance hydrogen evolution reaction. Nano Res. 2023, 16, 6212–6219.

    Article  ADS  CAS  Google Scholar 

  113. Zhang, X.; Wang, L. Research progress of carbon nanofiber-based precious-metal-free oxygen reaction catalysts synthesized by electrospinning for Zn-air batteries. J. Power Sources 2021, 507, 230280.

    Article  CAS  Google Scholar 

  114. Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res., https://doi.org/10.1007/s12274-023-5700-4.

  115. Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ming, M.; Zhang, Y.; He, C.; Zhao, L.; Niu, S.; Fan, G. Y.; Hu, J. S. Room-temperature sustainable synthesis of selected platinum group metal (PGM = Ir, Rh, and Ru) nanocatalysts well-dispersed on porous carbon for efficient hydrogen evolution and oxidation. Small 2019, 15, 1903057.

    Article  CAS  Google Scholar 

  117. Wang, H. W.; Gu, X. K.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Chen, S.; Cao, L. N.; Li, W. X.; Lu, J. L. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity. Sci. Adv. 2019, 5, eaat6413.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  118. Han, B. C.; Miranda, C. R.; Ceder, G. Effect of particle size and surface structure on adsorption of O and OH on platinum nanoparticles: A first-principles study. Phys. Rev. B 2008, 77, 075410.

    Article  ADS  Google Scholar 

  119. Sun, Y. B.; Zhuang, L.; Lu, J. T.; Hong, X. L.; Liu, P. F. Collapse in crystalline structure and decline in catalytic activity of Pt nanoparticles on reducing particle size to 1 nm. J. Am. Chem. Soc. 2007, 129, 15465–15467.

    Article  CAS  PubMed  Google Scholar 

  120. Wang, Z. P.; Pan, X. X.; Qian, S. Y.; Yang, G.; Du, F. L.; Yuan, X. The beauty of binary phases: A facile strategy for synthesis, processing, functionalization, and application of ultrasmall metal nanoclusters. Coord. Chem. Rev. 2021, 438, 213900.

    Article  CAS  Google Scholar 

  121. Yuan, X.; Chng, L. L.; Yang, J. H.; Ying, J. Y. Miscible-solvent-assisted two-phase synthesis of monolayer-ligand-protected metal nanoclusters with various sizes. Adv. Mater. 2020, 32, 1906063.

    Article  CAS  Google Scholar 

  122. Wang, X. N.; Zhao, L. M.; Li, X. J.; Liu, Y.; Wang, Y. S.; Yao, Q. F.; Xie, J. P.; Xue, Q. Z.; Yan, Z. F.; Yuan, X. et al. Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation. Nat. Commun. 2022, 13, 1596.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yang, Z. J.; Chen, C. Q.; Zhao, Y. X.; Wang, Q.; Zhao, J. Q.; Waterhouse, G. I. N.; Qin, Y.; Shang, L.; Zhang, T. R. Pt single atoms on CrN nanoparticles deliver outstanding activity and CO tolerance in the hydrogen oxidation reaction. Adv. Mater. 2023, 35, 2208799.

    Article  CAS  Google Scholar 

  124. Li, M. T.; Xie, Z. Y.; Zheng, X. Q.; Li, L.; Li, J.; Ding, W.; Wei, Z. D. Revealing the regulation mechanism of Ir-MoO2 interfacial chemical bonding for improving hydrogen oxidation reaction. ACS Catal. 2021, 11, 14932–14940.

    Article  CAS  Google Scholar 

  125. Wang, T. Y.; Xie, H.; Chen, M. J.; D’Aloia, A.; Cho, J.; Wu, G.; Li, Q. Precious metal-free approach to hydrogen electrocatalysis for energy conversion: From mechanism understanding to catalyst design. Nano Energy 2017, 42, 69–89.

    Article  Google Scholar 

  126. Zhao, G. Q.; Chen, J.; Sun, W. P.; Pan, H. G. Non-platinum group metal electrocatalysts toward efficient hydrogen oxidation reaction. Adv. Funct. Mater. 2021, 31, 2010633.

    Article  CAS  Google Scholar 

  127. Feng, Z. P.; Li, L.; Zheng, X. Q.; Li, J.; Yang, N.; Ding, W.; Wei, Z. D. Role of hydroxyl species in hydrogen oxidation reaction: A DFT study. J. Phys. Chem. C 2019, 123, 23931–23939.

    Article  CAS  Google Scholar 

  128. Liu, L.; Liu, Y. Y.; Liu, C. G. Enhancing the understanding of hydrogen evolution and oxidation reactions on Pt(111) through ab initio simulation of electrode/electrolyte kinetics. J. Am. Chem. Soc. 2020, 142, 4985–4989.

    Article  CAS  PubMed  Google Scholar 

  129. Skúlason, E.; Tripkovic, V.; Björketun, M. E.; Gudmundsdóttir, S.; Karlberg, G.; Rossmeisl, J.; Bligaard, T.; Jónsson, H.; Nørskov, J. K. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 2010, 114, 18182–18197.

    Article  Google Scholar 

  130. Xue, W. J.; Liu, H. X.; Chen, X. Q.; Yang, X. J.; Yang, R. Q.; Liu, Y. W.; Li, M. H.; Yang, X.; Xia, B. Y.; You, B. Operando reconstruction towards stable CuI nanodots with favorable facets for selective CO2 electroreduction to C2H4. Sci. China Chem. 2023, 66, 1834–1843.

    Article  CAS  Google Scholar 

  131. Chen, H. Q.; Zou, L.; Wei, D. Y.; Zheng, L. L.; Wu, Y. F.; Zhang, H.; Li, J. F. In situ studies of energy-related electrochemical reactions using Raman and X-ray absorption spectroscopy. Chin. J. Catal. 2022, 43, 33–46.

    Article  CAS  Google Scholar 

  132. Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395.

    Article  ADS  CAS  PubMed  Google Scholar 

  133. Li, J. F.; Zhang, Y. J.; Ding, S. Y.; Panneerselvam, R.; Tian, Z. Q. Core-shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 2017, 117, 5002–5069.

    Article  CAS  PubMed  Google Scholar 

  134. Wang, Y. H.; Wang, X. T.; Ze, H.; Zhang, X. G.; Radjenovic, P. M.; Zhang, Y. J.; Dong, J. C.; Tian, Z. Q.; Li, J. F. Spectroscopic verification of adsorbed hydroxy intermediates in the bifunctional mechanism of the hydrogen oxidation reaction. Angew. Chem., Int. Ed. 2021, 60, 5708–5711.

    Article  CAS  Google Scholar 

  135. Lin, X. M.; Wang, X. T.; Deng, Y. L.; Chen, X.; Chen, H. N.; Radjenovic, P. M.; Zhang, X. G.; Wang, Y. H.; Dong, J. C.; Tian, Z. Q. et al. In situ probe of the hydrogen oxidation reaction intermediates on PtRu a bimetallic catalyst surface by core–shell nanoparticle-enhanced Raman spectroscopy. Nano Lett. 2022, 22, 5544–5552.

    Article  ADS  CAS  PubMed  Google Scholar 

  136. Li, J. K.; Gong, J. L. Operando characterization techniques for electrocatalysis. Energy Environ. Sci. 2020, 13, 3748–3779.

    Article  CAS  Google Scholar 

  137. Zhu, S. Q.; Qin, X. P.; Xiao, F.; Yang, S. L.; Xu, Y.; Tan, Z.; Li, J. D.; Yan, J. W.; Chen, Q.; Chen, M. S. et al. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 2021, 4, 711–718.

    Article  CAS  Google Scholar 

  138. Han, L. L.; Ou, P. F.; Liu, W.; Wang, X.; Wang, H. T.; Zhang, R.; Pao, C. W.; Liu, X. J.; Pong, W. F.; Song, J. et al. Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation. Sci. Adv. 2022, 8, eabm3779.

    Article  Google Scholar 

  139. Zhu, Y. P.; Kuo, T. R.; Li, Y. H.; Qi, M. Y.; Chen, G.; Wang, J. L.; Xu, Y. J.; Chen, H. M. Emerging dynamic structure of electrocatalysts unveiled by in situ X-ray diffraction/absorption spectroscopy. Energy Environ. Sci. 2021, 14, 1928–1958.

    Article  CAS  Google Scholar 

  140. Li, Q. H.; Peng, H. Q.; Wang, Y. M.; Xiao, L.; Lu, J. T.; Zhuang, L. The comparability of Pt to Pt-Ru in catalyzing the hydrogen oxidation reaction for alkaline polymer electrolyte fuel cells operated at 80 °C. Angew. Chem., Int. Ed. 2019, 58, 1442–1446.

    Article  CAS  Google Scholar 

  141. Hamo, E. R.; Singh, R. K.; Douglin, J. C.; Chen, S. A.; Hassine, M. B.; Carbo-Argibay, E.; Lu, S. F.; Wang, H. N.; Ferreira, P. J.; Rosen, B. A. et al. Carbide-supported PtRu catalysts for hydrogen oxidation reaction in alkaline electrolyte. ACS Catal. 2021, 11, 932–947.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of this research by the National Natural Science Foundation of China (Nos. 22179034 and 22279030), and the Natural Science Foundation of Heilongjiang Province (No. ZD2023B002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Xie or Lei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Xie, Y. & Wang, L. Progress and prospect of Pt-based catalysts for electrocatalytic hydrogen oxidation reactions. Nano Res. 17, 960–981 (2024). https://doi.org/10.1007/s12274-023-5987-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5987-1

Keywords

Navigation