Skip to main content
Log in

Persistence of charge density wave against variation of band structures in VxTi1−xSe2(x = 0−0.1)

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Charge density wave (CDW) is a phenomenon that occurs in materials, accompanied by changes in their intrinsic electronic properties. The study of CDW and its modulation in materials holds tremendous significance in materials research, as it provides a unique approach to controlling the electronic properties of materials. TiSe2 is a typical layered material with a CDW phase at low temperatures. Through V substitution for Ti in TiSe2, we tuned the carrier concentration in VxTi1−xSe2 to study how its electronic structures evolve. Angle-resolved photoemission spectroscopy (ARPES) shows that the band-folding effect is sustained with the doping level up to 10%, indicating the persistence of the CDW phase, even though the band structure is strikingly different from that of the parent compound TiSe2. Though CDW can induce the band fold effect with a driving force from the perspective of electronic systems, our studies suggest that this behavior could be maintained by lattice distortion of the CDW phase, even if band structures deviate from the electron-driven CDW scenario. Our work provides a constraint for understanding the CDW mechanism in TiSe2, and highlights the role of lattice distortion in the band-folding effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Di Salvo, F. J.; Waszczak, J. V. Transport properties and the phase transition in Ti1−xMxSe2 (M = Ta or V). Phys. Rev. B 1978, 17, 3801–3807.

    Article  ADS  CAS  Google Scholar 

  2. Mottas, M. L.; Jaouen, T.; Hildebrand, B.; Rumo, M.; Vanini, F.; Razzoli, E.; Giannini, E.; Barreteau, C.; Bowler, D. R.; Monney, C. et al. Semimetal-to-semiconductor transition and charge-density-wave suppression in 1T-TiSe2−xSx single crystals. Phys. Rev. B 2019, 99, 155103.

    Article  ADS  CAS  Google Scholar 

  3. Lee, K.; Choe, J.; Iaia, D.; Li, J. Q.; Zhao, J. J.; Shi, M.; Ma, J. Z.; Yao, M. Y.; Wang, Z. Y.; Huang, C. L. et al. Metal-to-insulator transition in Pt-doped TiSe2 driven by emergent network of narrow transport channels. npj Quantum Mater. 2021, 6, 8.

    Article  ADS  CAS  Google Scholar 

  4. Morosan, E.; Zandbergen, H. W.; Dennis, B. S.; Bos, J. W. G.; Onose, Y.; Klimczuk, T.; Ramirez, A. P.; Ong, N. P.; Cava, R. J. Superconductivity in CuxTiSe2. Nat. Phys. 2006, 2, 544–550.

    Article  CAS  Google Scholar 

  5. Qian, D.; Hsieh, D.; Wray, L.; Morosan, E.; Wang, N. L.; Xia, Y.; Cava, R. J.; Hasan, M. Z. Emergence of fermi pockets in a new excitonic charge-density-wave melted superconductor. Phys. Rev. Lett. 2007, 98, 117007.

    Article  ADS  PubMed  CAS  Google Scholar 

  6. Liao, M. H.; Wang, H.; Zhu, Y. Y.; Shang, R. N.; Rafique, M.; Yang, L. X.; Zhang, H.; Zhang, D.; Xue, Q. K. Coexistence of resistance oscillations and the anomalous metal phase in a lithium intercalated TiSe2 superconductor. Nat. Commun. 2021, 12, 5342.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  7. Li, L. J.; O’Farrell, E. C. T.; Loh, K. P.; Eda, G.; Özyilmaz, B.; Castro Neto, A. H. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 2016, 529, 185–189.

    Article  ADS  PubMed  CAS  Google Scholar 

  8. Liu, M. Z.; Wu, C. W.; Liu, Z. Z.; Wang, Z. Q.; Yao, D. X.; Zhong, D. Y. Multimorphism and gap opening of charge-density-wave phases in monolayer VTe2. Nano Res. 2020, 13, 1733–1738.

    Article  CAS  Google Scholar 

  9. Mitsuishi, N.; Sugita, Y.; Bahramy, M. S.; Kamitani, M.; Sonobe, T.; Sakano, M.; Shimojima, T.; Takahashi, H.; Sakai, H.; Horiba, K. et al. Switching of band inversion and topological surface states by charge density wave. Nat. Commun. 2020, 11, 2466.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zhao, W. M.; Zhu, L.; Nie, Z. W.; Li, Q. Y.; Wang, Q. W.; Dou, L. G.; Hu, J. G.; Xian, L. D.; Meng, S.; Li, S. C. Moiré enhanced charge density wave state in twisted 1T-TiTe2/1T-TiSe2 heterostructures. Nat. Mater. 2022, 21, 284–289.

    Article  ADS  PubMed  CAS  Google Scholar 

  11. Feng, J. J.; Susilo, R. A.; Lin, B. C.; Deng, W.; Wang, Y. J.; Li, B.; Jiang, K.; Chen, Z. Q.; Xing, X. Z.; Shi, Z. X. et al. Achieving room-temperature charge density wave in transition metal dichalcogenide 1T-VSe2. Adv. Electron. Mater. 2020, 6, 1901427.

    Article  CAS  Google Scholar 

  12. Xi, X. X.; Zhao, L.; Wang, Z. F.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 2015, 10, 765–769.

    Article  ADS  PubMed  CAS  Google Scholar 

  13. Chen, P.; Chan, Y. H.; Wong, M. H.; Fang, X. Y.; Chou, M. Y.; Mo, S. K.; Hussain, Z.; Fedorov, A. V.; Chiang, T. C. Dimensional effects on the charge density waves in ultrathin films of TiSe2. Nano Lett. 2016, 16, 6331–6336.

    Article  ADS  PubMed  CAS  Google Scholar 

  14. Ishiguro, Y.; Bogdanov, K.; Kodama, N.; Ogiba, M.; Ohno, T.; Baranov, A.; Takai, K. Layer number dependence of charge density wave phase transition between nearly-commensurate and incommensurate phases in 1T-TaS2. J. Phys. Chem. C 2020, 124, 27176–27184.

    Article  CAS  Google Scholar 

  15. Kidd, T. E.; Miller, T.; Chou, M. Y.; Chiang, T. C. Electron–hole coupling and the charge density wave transition in TiSe2. Phys. Rev. Lett. 2002, 88, 226402.

    Article  ADS  PubMed  CAS  Google Scholar 

  16. Zhao, J. F.; Ou, H. W.; Wu, G.; Xie, B. P.; Zhang, Y.; Shen, D. W.; Wei, J.; Yang, L. X.; Dong, J. K.; Arita, M. et al. Evolution of the Electronic Structure of 1T-CuxTiSe2. Phys. Rev. Lett. 2007, 99, 146401.

    Article  ADS  PubMed  CAS  Google Scholar 

  17. Kohn, W. Excitonic phases. Phys. Rev. Lett. 1967, 19, 439–442.

    Article  ADS  CAS  Google Scholar 

  18. Watanabe, H.; Seki, K.; Yunoki, S. Charge-density wave induced by combined electron–electron and electron–phonon interactions in 1T-TiSe2: A variational Monte Carlo study. Phys. Rev. B 2015, 91, 205135.

    Article  ADS  Google Scholar 

  19. Kogar, A.; Rak, M. S.; Vig, S.; Husain, A. A.; Flicker, F.; Joe, Y. I.; Venema, L.; MacDougall, G. J.; Chiang, T. C.; Fradkin, E. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 2017, 358, 1314–1317.

    Article  ADS  PubMed  CAS  Google Scholar 

  20. Chen, C.; Singh, B.; Lin, H.; Pereira, V. M. Reproduction of the charge density wave phase diagram in 1T-TiSe2 exposes its excitonic character. Phys. Rev. Lett. 2018, 121, 226602.

    Article  ADS  PubMed  CAS  Google Scholar 

  21. Rossnagel, K.; Kipp, L.; Skibowski, M. Charge-density-wave phase transition in 1T-TiSe2: Excitonic insulator versus band-type Jahn-Teller mechanism. Phys. Rev. B 2002, 65, 235101.

    Article  ADS  Google Scholar 

  22. Wegner, A.; Zhao, J.; Li, J.; Yang, J.; Anikin, A. A.; Karapetrov, G.; Esfarjani, K.; Louca, D.; Chatterjee, U. Evidence for pseudo-Jahn-Teller distortions in the charge density wave phase of 1T-TiSe2. Phys. Rev. B 2020, 101, 195145.

    Article  ADS  CAS  Google Scholar 

  23. Cercellier, H.; Monney, C.; Clerc, F.; Battaglia, C.; Despont, L.; Garnier, M. G.; Beck, H.; Aebi, P.; Patthey, L.; Berger, H. et al. Evidence for an excitonic insulator phase in 1T-TiSe2. Phys. Rev. Lett. 2007, 99, 146403.

    Article  ADS  PubMed  CAS  Google Scholar 

  24. Friend, R. H.; Parkin, S. S. P.; Jerome, D. The transport properties of vanadium-doped TiSe2 under pressure. J. Phys. C:Solid state Phys. 1982, 15, L871–L874.

    Article  ADS  CAS  Google Scholar 

  25. Watson, M. D.; Rajan, A.; Antonelli, T.; Underwood, K.; Marković, I.; Mazzola, F.; Clark, O. J.; Siemann, G.-R.; Biswas, D.; Hunter, A.; Jandura, S.; Reichstetter, J.; McLaren, M.; Le Fèvre, P.; Vinai, G.; King, P. D. C. Strong-coupling charge density wave in monolayer TiSe2. 2D Materials 2020, 8, 015004.

    Article  Google Scholar 

  26. Chuang, C. W.; Tanaka, Y.; Oura, M.; Rossnagel, K.; Chainani, A. Attractive Coulomb interaction, temperature-dependent hybridization, and natural circular dichroism in 1T-TiSe2. Phys. Rev. B 2020, 102, 195102.

    Article  ADS  CAS  Google Scholar 

  27. Song, Z. P.; Huang, J. R.; Zhang, S.; Cao, Y.; Liu, C.; Zhang, R. Z.; Zheng, Q.; Cao, L.; Huang, L.; Wang, J. O. et al. Observation of an incommensurate charge density wave in monolayer TiSe2/CuSe/Cu(111) heterostructure. Phys. Rev. Lett. 2022, 128, 026401.

    Article  ADS  PubMed  CAS  Google Scholar 

  28. Watson, M. D.; Beales, A. M.; King, P. D. C. On the origin of the anomalous peak in the resistivity of TiSe2. Phys. Rev. B 2019, 99, 195142.

    Article  ADS  CAS  Google Scholar 

  29. Gao, Q.; Chan, Y. H.; Wang, Y. Z.; Zhang, H. T.; Pu, J. X.; Cui, S. T.; Yang, Y. C.; Liu, Z. T.; Shen, D. W.; Sun, Z. et al. Evidence of high-temperature exciton condensation in a two-dimensional semimetal. Nat. Commun. 2023, 14, 994.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  30. Adam, M. L.; Zhu, H. E.; Liu, Z. F.; Cui, S. T.; Zhang, P. J.; Liu, Y.; Zhang, G. B.; Wu, X. J.; Sun, Z.; Song, L. Charge density wave phase suppression in 1T-TiSe2 through Sn intercalation. Nano Res. 2022, 15, 2643–2649.

    Article  ADS  CAS  Google Scholar 

  31. Hughes, H. P. Structural distortion in TiSe2 and related materials—A possible Jahn-Teller effect. J. Phys. C Solid State Phys. 1977, 10, L319–L323.

    Article  ADS  CAS  Google Scholar 

  32. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  ADS  Google Scholar 

  33. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  34. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  ADS  CAS  Google Scholar 

  35. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  ADS  CAS  Google Scholar 

  36. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  ADS  PubMed  Google Scholar 

  37. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509.

    Article  ADS  CAS  Google Scholar 

  38. Bianco, R.; Calandra, M.; Mauri, F. Electronic and vibrational properties of TiSe2 in the charge-density-wave phase from first principles. Phys. Rev. B 2015, 92, 094107.

    Article  ADS  Google Scholar 

  39. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5.

    Article  ADS  CAS  Google Scholar 

  40. Mostofi, A. A.; Yates, J. R.; Lee, Y. S.; Souza, I.; Vanderbilt, D.; Marzari, N. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2008, 178, 685–699.

    Article  ADS  CAS  Google Scholar 

  41. Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT:A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

    Article  CAS  Google Scholar 

  42. Wu, Q. S.; Zhang, S. N.; Song, H. F.; Troyer, M.; Soluyanov, A. A. WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun. 2018, 224, 405–416.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the National Key R&D Program of China (No. 2017YFA0402901), the National Natural Science Foundation of China (Nos. U2032153, 21727801, and 11621063), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB25000000), the International Partnership Program of Chinese Academy of Sciences (CAS)(No. 211134KYSB20190063), the Collaborative Innovation Program of Hefei Science Center of CAS (No. 2019HSC-CIP007). We thank the Hefei Synchrotron Radiation Facility (ARPES Endstation at the NSRL), and the University of Science and Technology of China (USTC) Center for Micro and Nanoscale Research and Fabrication for help in characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengtao Cui, Li Song or Zhe Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, T., Zhu, W. et al. Persistence of charge density wave against variation of band structures in VxTi1−xSe2(x = 0−0.1). Nano Res. 17, 2129–2135 (2024). https://doi.org/10.1007/s12274-023-5936-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5936-z

Keywords

Navigation