Skip to main content
Log in

Highly stretchable, conductive, and wide-operating temperature ionogel based wearable triboelectric nanogenerator

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The rapid development of wearable electronic products brings challenges to corresponding power supplies. In this work, a thermally stable and stretchable ionogel-based triboelectric nanogenerator (SI-TENG) for biomechanical energy collection is proposed. The ionic conductivity of the ionogel increased to 0.53 S·m−1 through optimal regulation of the amount of aminoterminated hyperbranched polyamide (NH2-HBP), which also has high strain of 812%, excellent stretch recovery, and wide operating temperature range of −80 to 250 °C. The SI-TENG with this ionogel as electrode and silicone rubber both as the triboelectric layer and encapsulation layer exhibits high temperature stability, stretchability, and washability. By adding appropriate amount of nano SiO2 to triboelectric layer, the output performance is further improved by 93%. Operating in single-electrode mode at 1.5 Hz, the outputs of a SI-TENG with an area of 3 cm × 3 cm are 247 V, 11.7 µA, 78 nC, and 3.2 W·m−2, respectively. It was used as a self-charging power supply to charge a 22 µF capacitor to 1.6 V in 167 s with the palm patting and then to power the electronic calculator. Furthermore, the SI-TENG can also be used as a self-powered motion sensor to detect the amplitude and frequency of finger bending, human swallowing, nodding, and shaking of the head motion changes through the analysis of the output voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tee, B. C. K.; Wang, C.; Allen, R.; Bao, Z. N. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 2012, 7, 825–832.

    Article  CAS  Google Scholar 

  2. Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

    Article  CAS  Google Scholar 

  3. Zhou, L. S.; Wanga, A.; Wu, S. C.; Sun, J.; Park, S.; Jackson, T. N. All-organic active matrix flexible display. Appl. Phys. Lett. 2006, 88, 083502.

    Article  Google Scholar 

  4. Chortos, A.; Liu, J.; Bao, Z. A. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937–950.

    Article  CAS  Google Scholar 

  5. Lai, Y. C.; Deng, J. N.; Niu, S. M.; Peng, W. B.; Wu, C. S.; Liu, R. Y.; Wen, Z.; Wang, Z. L. Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications. Adv. Mater. 2016, 28, 10024–10032.

    Article  CAS  Google Scholar 

  6. Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88.

    Article  CAS  Google Scholar 

  7. Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26, 5310–5336.

    Article  CAS  Google Scholar 

  8. Wang, Z. L. Self-powered nanosensors and nanosystems. Adv. Mater. 2012, 24, 280–285.

    Article  CAS  Google Scholar 

  9. Lai, Y. C.; Wu, H. M.; Lin, H. C.; Chang, C. L.; Chou, H. H.; Hsiao, Y. C.; Wu, Y. C. Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins. Adv. Funct. Mater. 2019, 29, 1904626.

    Article  Google Scholar 

  10. Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

    Article  Google Scholar 

  11. Shi, J. H.; Chen, X. P.; Li, G. F.; Sun, N.; Jiang, H. X.; Bao, D. Q.; Xie, L. J.; Peng, M. F.; Liu, Y. N.; Wen, Z. et al. A liquid PEDOT: PSS electrode-based stretchable triboelectric nanogenerator for a portable self-charging power source. Nanoscale 2019, 11, 7513–7519.

    Article  CAS  Google Scholar 

  12. Zhao, G. R.; Zhang, Y. W.; Shi, N.; Liu, Z. R.; Zhang, X. D.; Wu, M. Q.; Pan, C. F.; Liu, H. L.; Li, L. L.; Wang, Z. L. Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 2019, 59, 302–310.

    Article  CAS  Google Scholar 

  13. Chen, Y. H.; Pu, X.; Liu, M. M.; Kuang, S. Y.; Zhang, P. P.; Hua, Q. L.; Cong, Z. F.; Guo, W. B.; Hu, W. G.; Wang, Z. L. Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid–solid contact electrification. ACS Nano 2019, 13, 8936–8945.

    Article  CAS  Google Scholar 

  14. Li, X. J.; Jiang, C. M.; Zhao, F. N.; Lan, L. Y.; Yao, Y.; Yu, Y. H.; Ping, J. F.; Ying, Y. B. Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing. Nano Energy 2019, 61, 78–85.

    Article  CAS  Google Scholar 

  15. Chen, X. X.; Song, Y.; Chen, H. T.; Zhang, J. X.; Zhang, H. X. An ultrathin stretchable triboelectric nanogenerator with coplanar electrode for energy harvesting and gesture sensing. J. Mater. Chem. A 2017, 5, 12361–12368.

    Article  CAS  Google Scholar 

  16. Bao, D. Q.; Wen, Z.; Shi, J. H.; Xie, L. J.; Jiang, H. X.; Jiang, J. X.; Yang, Y. Q.; Liao, W. Q.; Sun, X. H. An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature. J. Mater. Chem. A 2020, 8, 13787–13794.

    Article  CAS  Google Scholar 

  17. Jing, X.; Li, H.; Mi, H. Y.; Feng, P. Y.; Tao, X. M.; Liu, Y. J.; Liu, C. T.; Shen, C. Y. Enhancing the performance of a stretchable and transparent triboelectric nanogenerator by optimizing the hydrogel ionic electrode property. ACS Appl. Mater. Interfaces 2020, 12, 23474–23483.

    Article  CAS  Google Scholar 

  18. Guan, Q. B.; Lin, G. H.; Gong, Y. Z.; Wang, J. F.; Tan, W. Y.; Bao, D. Q.; Liu, Y. N.; You, Z. W.; Sun, X. H.; Wen, Z. et al. Highly efficient self-healable and dual responsive hydrogel-based deformable triboelectric nanogenerators for wearable electronics. J. Mater. Chem. A 2019, 7, 13948–13955.

    Article  CAS  Google Scholar 

  19. Ding, Y.; Zhang, J. J.; Chang, L.; Zhang, X. Q.; Liu, H. L.; Jiang, L. Preparation of high-performance ionogels with excellent transparency, good mechanical strength, and high conductivity. Adv. Mater. 2017, 29, 1704253.

    Article  Google Scholar 

  20. Chen, S. P.; Zhang, N. X.; Zhang, B. H.; Zhang, B.; Song, J. Multifunctional self-healing ionogels from supramolecular assembly: Smart conductive and remarkable lubricating materials. ACS Appl. Mater. Interfaces 2018, 10, 44706–44715.

    Article  CAS  Google Scholar 

  21. Kamio, E.; Yasui, T.; Iida, Y.; Gong, J. P.; Matsuyama, H. Inorganic/organic double-network gels containing ionic liquids. Adv. Mater. 2017, 29, 1704118.

    Article  Google Scholar 

  22. Cao, Y.; Morrissey, T. G.; Acome, E.; Allec, S. I.; Wong, B. M.; Keplinger, C.; Wang, C. A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 2017, 29, 1605099.

    Article  Google Scholar 

  23. Gao, Y. Y.; Guo, J. J.; Chen, J.; Yang, G. X.; Shi, L.; Lu, S. Y.; Wu, H.; Mao, H.; Da, X. Y.; Gao, G. X. et al. Highly conductive organic-ionogels with excellent hydrophobicity and flame resistance. Chem. Eng. J. 2022, 427, 131057.

    Article  CAS  Google Scholar 

  24. Gao, Y. Y.; Shi, L.; Lu, S. Y.; Zhu, T. X.; Da, X. Y.; Li, Y. H.; Bu, H. T.; Gao, G. X.; Ding, S. J. Highly stretchable organogel ionic conductors with extreme-temperature tolerance. Chem. Mater. 2019, 31, 3257–3264.

    Article  CAS  Google Scholar 

  25. Chen, X. P.; Liu, Y. N.; Sun, Y.; Zhao, T. S.; Zhao, C.; Khattab, T. A.; Lim, E. G.; Sun, X. H.; Wen, Z. Electron trapping & blocking effect enabled by MXene/TiO2 intermediate layer for charge regulation of triboelectric nanogenerators. Nano Energy 2022, 98, 107236.

    Article  CAS  Google Scholar 

  26. Chikh, L.; Arnaud, X.; Guillermain, C.; Tessier, M.; Fradet, A. Cyclizations in hyperbranched aliphatic polyesters and polyamides. Macromol. Symp. 2003, 199, 209–222.

    Article  CAS  Google Scholar 

  27. Ren, L. F.; Zhao, G. H.; Qiang, T. T.; Wang, X. C.; Wang, N. Synthesis of amino-terminated hyperbranched polymers and their application in microfiber synthetic leather base dyeing. Text. Res. J. 2013, 83, 381–395.

    Article  Google Scholar 

  28. Lei, H.; Cao, K. L.; Chen, Y. F.; Liang, Z. Q.; Wen, Z.; Jiang, L.; Sun, X. H. 3D-printed endoplasmic reticulum rGO microstructure based self-powered triboelectric pressure sensor. Chem. Eng. J. 2022, 445, 136821.

    Article  CAS  Google Scholar 

  29. Wang, A. L.; Xu, H.; Zhou, Q.; Liu, X.; Li, Z. Y.; Gao, R.; Wu, N.; Guo, Y. G.; Li, H. Y.; Zhang, L. Y. A new all-solid-state hyperbranched star polymer electrolyte for lithium ion batteries: Synthesis and electrochemical properties. Electrochim. Acta 2016, 212, 372–379.

    Article  CAS  Google Scholar 

  30. Lim, H. R.; Kim, H. S.; Qazi, R.; Kwon, Y. T.; Jeong, J. W.; Yeo, W. H. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 2020, 32, 1901924.

    Article  CAS  Google Scholar 

  31. Niu, L.; Miao, X. H.; Li, Y. T.; Xie, X. K.; Wen, Z.; Jiang, G. M. Surface morphology analysis of knit structure-based triboelectric nanogenerator for enhancing the transfer charge. Nanoscale Res. Lett. 2020, 15, 1–12.

    Article  Google Scholar 

  32. Bai, Y. K.; Zhang, J. W.; Wen, D. D.; Yuan, B.; Gong, P. W.; Liu, J. M.; Chen, X. Fabrication of remote controllable devices with multistage responsiveness based on a NIR light-induced shape memory ionomer containing various bridge ions. J. Mater. Chem. A 2019, 7, 20723–20732.

    Article  CAS  Google Scholar 

  33. Zhang, L. M.; He, Y.; Cheng, S. B.; Sheng, H.; Dai, K. R.; Zheng, W. J.; Wang, M. X.; Chen, Z. S.; Chen, Y. M.; Suo, Z. G. Self-healing, adhesive, and highly stretchable ionogel as a strain sensor for extremely large deformation. Small 2019, 15, 1804651.

    Article  Google Scholar 

  34. Li, R. J.; Fang, Z.; Wang, C.; Zhu, X. L.; Fu, X. L.; Fu, J. J.; Yan, W. W.; Yang, Y. Six-armed and dicationic polymeric ionic liquid for highly stretchable, nonflammable, and notch-insensitive intrinsic selfhealing solid-state polymer electrolyte for flexible and safe lithium batteries. Chem. Eng. J. 2022, 430, 132706.

    Article  CAS  Google Scholar 

  35. Huang, J. F.; Luo, H. M.; Liang, C. D.; Sun, I. W.; Baker, G. A.; Dai, S. Hydrophobic brønsted acid–base ionic liquids based on PAMAM dendrimers with high proton conductivity and blue photoluminescence. J. Am. Chem. Soc. 2005, 127, 12784–12785.

    Article  CAS  Google Scholar 

  36. Chen, H.; Liu, Y. L.; Ren, B. P.; Zhang, Y. X.; Ma, J.; Xu, L. J.; Chen, Q.; Zheng, J. Super bulk and interfacial toughness of physically crosslinked double-network hydrogels. Adv. Funct. Mater. 2017, 27, 1703086.

    Article  Google Scholar 

  37. Zhang, Z.; Gao, Z. L.; Wang, Y. T.; Guo, L. X.; Yin, C. H.; Zhang, X. L.; Hao, J. C.; Zhang, G. M.; Chen, L. S. Eco-friendly, self-healing hydrogels for adhesive and elastic strain sensors, circuit repairing, and flexible electronic devices. Macromolecules 2019, 52, 2531–2541.

    Article  CAS  Google Scholar 

  38. Hong, X. Y.; Tyson, J. C.; Middlecoff, J. S.; Collard, D. M. Synthesis and oxidative polymerization of semifluoroalkyl-substituted thiophenes. Macromolecules 1999, 32, 4232–4239.

    Article  CAS  Google Scholar 

  39. Qu, M. N.; Liu, S. S.; He, J. M.; Feng, J.; Yao, Y. L.; Hou, L. G.; Ma, X. R.; Liu, X. R. Fabrication of recyclable superhydrophobic materials with self-cleaning and mechanically durable properties on various substrates by quartz sand and polyvinylchloride. RSC Adv. 2016, 6, 79238–79244.

    Article  CAS  Google Scholar 

  40. Günther, P.; Xia, Z. F. Transport of detrapped charges in thermally wet grown SiO2 electrets. J. Appl. Phys. 1993, 74, 7269–7274.

    Article  Google Scholar 

  41. Shao, Y.; Feng, C. P.; Deng, B. W.; Yin, B.; Yang, M. B. Facile method to enhance output performance of bacterial cellulose nanofiber based triboelectric nanogenerator by controlling micronano structure and dielectric constant. Nano Energy 2019, 62, 620–627.

    Article  CAS  Google Scholar 

  42. Sun, L. J.; Chen, S.; Guo, Y. F.; Song, J. C.; Zhang, L. Z.; Xiao, L. J.; Guan, Q. B.; You, Z. W. Ionogel-based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range. Nano Energy 2019, 63, 103847.

    Article  CAS  Google Scholar 

  43. Zhang, P. P.; Chen, Y. H.; Guo, Z. H.; Guo, W. B.; Pu, X.; Wang, Z. L. Stretchable, transparent, and thermally stable triboelectric nanogenerators based on solvent-free ion-conducting elastomer electrodes. Adv. Funct. Mater. 2020, 30, 1909252.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program from Ministry of Science and Technology of China (No. 2021YFB3200300), the National Natural Science Foundation of China (No. 62174115), and the Suzhou Science and Technology Development Planning Project: Key Industrial Technology Innovation (No. SYG202009). This work was also supported by the Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Project and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuqi Li, Zhen Wen or Xuhui Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Liao, W., Sun, C. et al. Highly stretchable, conductive, and wide-operating temperature ionogel based wearable triboelectric nanogenerator. Nano Res. 16, 11638–11645 (2023). https://doi.org/10.1007/s12274-023-5851-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5851-3

Keywords

Navigation