Skip to main content
Log in

A quadruplex immunochromatographic assay for the ultrasensitive detection of 11 anesthetics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Anesthetic residues in fish represent a potential risk to human health. Therefore, it is important to develop a sensitive and broad-specific method for the detection of anesthetics. In this study, we developed a colloidal gold-based quadruplex immunochromatographic (Qua-ICS) assay using four highly sensitive monoclonal antibody immunotherapy (mAbs) that simultaneously detected 11 anesthetic residues in fish within 10 min. The colorimetric and cut-off values (COVs) for procaines, eugenols, bupivacaines, and tricaine (TMS) were 0.37–1.1 and 3.3–10, 11–222 and 100–2000, 0.37 and 3.3, and 111 and 10,000 µg/kg, respectively. Quantitative analysis was achieved with a portable strip-reader, and the detection ranges were 0.15–2.6, 6.3–677, 0.13–2.8, and 83–1245 µg/kg for procaines, eugenols, bupivacaines, and tricaine, respectively. Our developed method was reliable and accurate according to the recovery test results and analyses of real samples. Therefore, the strip can be used as an alternative method for the rapid detection of anesthetic residues in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Purbosari, N.; Warsiki, E.; Syamsu, K.; Santoso, J. Natural versus synthetic anesthetic for transport of live fish: A review. Aquacult. Fish. 2019, 4, 129–133.

    Google Scholar 

  2. Fernandes, I. M.; Bastos, Y. F.; Barreto, D. S.; Lourenço, L. S.; Penha, J. M. The efficacy of clove oil as an anaesthetic and in euthanasia procedure for small-sized tropical fishes. Braz. J. Biol. 2017, 77, 444–450.

    Article  CAS  Google Scholar 

  3. Ke, C. L.; Liu, Q.; Li, L. D.; Chen, J. W.; Wang, X. N.; Huang, K. Simultaneous determination of eugenol, isoeugenol and methyleugenol in fish fillet using gas chromatography coupled to tandem mass spectrometry. J. Chromalogr. B 2016, 1031, 189–194.

    Article  CAS  Google Scholar 

  4. Huang, Y. X.; Li, Q.; Zhang, Y. L.; Meng, Z. J.; Yuan, X. X.; Fan, S. F.; Zhang, Y. Determination of six eugenol residues in aquatic products by gas chromatography-orbitrap mass spectrometry. J. Food Qualily 2021, 2021, 9438853.

    Google Scholar 

  5. Lei, X. L.; Xu, X. X.; Liu, L. Q.; Kuang, H.; Xu, L. G.; Hao, C. L. Immunochromatographic test strip for the rapid detection of tricaine in fish samples. Food Agricull. Immunol. 2020, 31, 687–699.

    Article  CAS  Google Scholar 

  6. Popovic, N. T.; Strunjak-Perovic, I.; Coz-Rakovac, R.; Barisic, J.; Jadan, M.; Berakovic, A.; P. Klobucar, R, S. Tricaine methane-sulfonate (MS-222) application in fish anaesthesia. J. Appl. Ichlhyol. 2012, 28, 553–564.

    Article  Google Scholar 

  7. Al-Saadi, A. A.; Haroon, M.; Popoola, S. A.; Saleh, T. A. Sensitive SERS detection and characterization of procaine in aqueous media by reduced gold nanoparticles. Sens. Actuators B:Chem. 2020, 304, 127057.

    Article  CAS  Google Scholar 

  8. Haroon, M.; Abdulazeez, I.; Saleh, T. A.; Al-Saadi, A. A. Electrochemically modulated SERS detection of procaine using FTO electrodes modified with silver-decorated carbon nanosphere. Electrochim. Acta 2021, 387, 138463.

    Article  CAS  Google Scholar 

  9. Kay, P.; Hughes, S. R.; Ault, J. R.; Ashcroft, A. E.; Brown, L. E. Widespread, routine occurrence of pharmaceuticals in sewage effluent, combined sewer overflows and receiving waters. Environ. Pollut. 2017, 220, 1447–1455.

    Article  CAS  Google Scholar 

  10. Malev, O.; Lovrić, M.; Stipaničev, D.; Repec, S.; Martinović-Weigelt, D.; Zanella, D.; Ivanković, T.; Ðuretec, V. S.; Barišić, J.; Li, M. et al. Toxicity prediction and effect characterization of 90 pharmaceuticals and illicit drugs measured in plasma of fish from a major European river (Sava, Croatia). Environ. Pollut. 2020, 266, 115162.

    Article  CAS  Google Scholar 

  11. Chèvre, N. Pharmaceuticals in surface waters: Sources, behavior, ecological risk, and possible solutions. Case study of Lake Geneva, Switzerland. Wiley Interdiscip. Rev.: Water 2014, 1, 69–86.

    Article  Google Scholar 

  12. Mu, S. H.; Wang, C. Y.; Liu, H.; Han, G.; Wu, L. D.; Li, J. C. Development and evaluation of a novelty single-step cleanup followed by HPLC-QTRAP-MS/MS for rapid analysis of tricaine, tetracaine, and bupivacaine in fish samples. Biom. Chromatogr. 2021, 35, e5176.

    Google Scholar 

  13. Zhou, R. D.; Mu, S. H.; Feng, T. W.; Liu, H.; Sun, H. W.; Li, J. C. Development of a vortex oscillating clean-up column for high-throughput semi-automatic sample preparation of drug residues in fish muscle tissues. J. Food Compos. Analy. 2022, 109, 104506.

    Article  CAS  Google Scholar 

  14. Cho, S. H.; Park, J. A.; Zheng, W. J.; El-Aty, A. M. A.; Kim, S. K.; Choi, J. M.; Yi, H.; Cho, S. M.; Afifi, N. A.; Shim, J. H. et al. Quantification of bupivacaine hydrochloride and isoflupredone acetate residues in porcine muscle, beef, milk, egg, shrimp, flatfish, and eel using a simplified extraction method coupled with liquid chromatography-triple quadrupole tandem mass spectrometry. J. Chromatogr. B 2017, 1065–1066, 29–34.

    Article  Google Scholar 

  15. Shen, X. Y.; Wu, X. L.; Liu, L. Q.; Kuang, H. Development of a colloidal gold immunoassay for the detection of four eugenol compounds in water. Food Agricult. Immunol. 2019, 30, 1318–1331.

    Article  CAS  Google Scholar 

  16. Gaudin, V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin—A comprehensive review. Biosens. Bioelectron. 2017, 90, 363–377.

    Article  CAS  Google Scholar 

  17. Foubert, A.; Beloglazova, N. V.; Gordienko, A.; Tessier, M. D.; Drijvers, E.; Hens, Z.; De Saeger, S. Development of a rainbow lateral flow immunoassay for the simultaneous detection of four mycotoxins. J. Agric. Food Chem. 2017, 65, 7121–7130.

    Article  CAS  Google Scholar 

  18. Vasylieva, N.; Barnych, B.; Rand, A.; Inceoglu, B.; Gee, S. J.; Hammock, B. D. Sensitive immunoassay for detection and quantification of the neurotoxin, tetramethylenedisulfotetramine. Anal. Chem. 2017, 89, 5612–5619.

    Article  CAS  Google Scholar 

  19. Kalele, S. A.; Kundu, A. A.; Gosavi, S. W.; Deobagkar, D. N.; Deobagkar, D. D.; Kulkarni, S. K. Rapid detection of Escherichia coli by using antibody-conjugated silver nanoshells. Small 2006, 2, 335–338.

    Article  CAS  Google Scholar 

  20. Taranova, N. A.; Berlina, A. N.; Zherdev, A. V.; Dzantiev, B. B. “Traffic light” immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosens. Bioelectron. 2015, 63, 255–261.

    Article  CAS  Google Scholar 

  21. Chen, Y. N.; Guo, L. L.; Liu, L. Q.; Song, S. S.; Kuang, H.; Xu, C. L. Ultrasensitive immunochromatographic strip for fast screening of 27 sulfonamides in honey and pork liver samples based on a monoclonal antibody. J. Agric. Food Chem. 2017, 65, 8248–8255.

    Article  CAS  Google Scholar 

  22. Guo, L. L.; Xu, X. X.; Zhao, J.; Hu, S. D.; Xu, L. G.; Kuang, H.; Xu, C. L. Multiple detection of 15 triazine herbicides by gold nanoparticle based-paper sensor. Nano Res. 2022, 15, 5483–5491.

    Article  CAS  Google Scholar 

  23. Wang, Z. X.; Zhao, J.; Xu, X. X.; Guo, L. L.; Xu, L. G.; Sun, M. Z.; Hu, S. D.; Kuang, H.; Xu, C. L.; Li, A. K. An overview for the nanoparticles-based quantitative lateral flow assay. Small Methods 2022, 6, 2101143.

    Article  CAS  Google Scholar 

  24. Guo, L. L.; Wu, X. L.; Liu, L. Q.; Kuang, H.; Xu, C. L. Gold nanoparticle-based paper sensor for simultaneous detection of 11 benzimidazoles by one monoclonal antibody. Small 2018, 14, 1701782.

    Article  Google Scholar 

  25. Zeng, L.; Xu, X. X.; Song, S. S.; Xu, L. G.; Liu, L. Q.; Xiao, J.; Xu, C. L.; Kuang, H. Synthesis of haptens and gold-based immunochromatographic paper sensor for vitamin B6 in energy drinks and dietary supplements. Nano Res. 2022, 15, 2479–2488.

    Article  CAS  Google Scholar 

  26. Bumbudsanpharoke, N.; Ko, S. Nanomaterial-based optical indicators: Promise, opportunities, and challenges in the development of colorimetric systems for intelligent packaging. Nano Res. 2019, 12, 489–500.

    Article  Google Scholar 

  27. Rivas, L.; De La Escosura-Muñiz, A.; Serrano, L.; Altet, L.; Francino, O.; Sánchez, A.; Merkoçi, A. Triple lines gold nanoparticle-based lateral flow assay for enhanced and simultaneous detection of Leishmania DNA and endogenous control. Nano Res. 2015, 8, 3704–3714.

    Article  CAS  Google Scholar 

  28. Hao, K.; Suryoprabowo, S.; Song, S. S.; Liu, L. Q.; Zheng, Q. K.; Kuang, H. Development of an immunochromatographic test strip for the detection of procaine in milk. Food Agricult. Immunol. 2018, 29, 1150–1161.

    Article  CAS  Google Scholar 

  29. Lin, L.; Song, S. S.; Wu, X. L.; Liu, L. Q.; Kuang, H.; Xiao, J.; Xu, C. L. Determination of robenidine in shrimp and chicken samples using the indirect competitive enzyme-linked immunosorbent assay and immunochromatographic strip assay. Analyst 2021, 146, 721–729.

    Article  CAS  Google Scholar 

  30. Yao, J. J.; Xu, X. X.; Liu, L. Q.; Kuang, H.; Xu, C. L. Gold nanoparticle-based immunoassay for the detection of bifenthrin in vegetables. Food Addit. Contam.: Part A 2022, 39, 531–541.

    Article  CAS  Google Scholar 

  31. Lei, X. L.; Xu, X. X.; Wang, L.; Liu, L. Q.; Kuang, H.; Xu, L. G.; Xu, C. L. Fluorescent microsphere-based lateral-flow immunoassay for rapid and sensitive determination of eugenols. Food Chem. 2023, 411, 135475.

    Article  CAS  Google Scholar 

  32. Lei, X. L.; Xu, X. X.; Liu, L. Q.; Xu, L. G.; Wang, L.; Kuang, H.; Xu, C. L. Gold-nanoparticle-based multiplex immuno-strip biosensor for simultaneous determination of 83 antibiotics. Nano Res. 2023, 16, 1259–1268.

    Article  CAS  Google Scholar 

  33. Hong, C. Y.; Chen, L. L.; Huang, J. Y.; Shen, Y. L.; Yang, H. F.; Huang, Z. Y.; Cai, R.; Tan, W. H. Gold nanoparticle-decorated MoSe2 nanosheets as highly effective peroxidase-like nanozymes for total antioxidant capacity assay. Nano Res. 2023, 16, 7181–7187.

    Article  Google Scholar 

  34. Zhang, L.; Mazouzi, Y.; Salmain, M.; Liedberg, B.; Boujday, S. Antibody-gold nanoparticle bioconjugates for biosensors: Synthesis, characterization and selected applications. Biosens. Bioelectron. 2020, 165, 112370.

    Article  CAS  Google Scholar 

  35. Hua, Z.; Yu, T.; Liu, D. H.; Xianyu, Y. L. Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosens. Bioelectron. 2021, 179, 113076.

    Article  CAS  Google Scholar 

  36. Xiang, T. Y.; Xu, X. X.; Xu, L. G.; Liu, L. Q.; Xu, C. L.; Kuang, H. Gold-based immunochromatographic strip assay for detecting dimethomorph in vegetables. New J. Chem. 2022, 46, 3882–3888.

    Article  CAS  Google Scholar 

  37. Wang, W. Q.; Yang, X. S.; Rong, Z.; Tu, Z. J.; Zhang, X. C.; Gu, B.; Wang, C. W.; Wang, S. Q. Introduction of graphene oxide-supported multilayer-quantum dots nanofilm into multiplex lateral flow immunoassay: A rapid and ultrasensitive point-of-care testing technique for multiple respiratory viruses. Nano Res. 2023, 16, 3063–3073.

    Article  CAS  Google Scholar 

  38. Dhananjeyan, M. R.; Bykowski, C.; Trendel, J. A.; Sarver, J. G.; Ando, H.; Erhardt, P. W. Simultaneous determination of procaine and para-aminobenzoic acid by LC-MS/MS method. J. Chromatogr. B 2007, 847, 224–230.

    Article  CAS  Google Scholar 

  39. Bai, Y. C.; Liu, R.; Dou, L. N.; Wu, W. L.; Yu, W. B.; Wen, K.; Yu, X. Z.; Shen, J. Z.; Wang, Z. H. The influence of hapten spacer arm length on antibody response and immunoassay development. Analy. Chim. Acta 2023, 1239, 340699.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key Research and Development Program of China (No. 2022YFF1101002), and Jiangsu Association for Science and Technology Youth Science and Technology Talent Support Project (No. TJ-2021-049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinxin Xu or Hua Kuang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, X., Xu, X., Wang, L. et al. A quadruplex immunochromatographic assay for the ultrasensitive detection of 11 anesthetics. Nano Res. 16, 11269–11277 (2023). https://doi.org/10.1007/s12274-023-5768-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5768-x

Keywords

Navigation