Skip to main content
Log in

Acetic acid-mediated rapid cubic-to-hexagonal (α–β) phase transformation for ultra-bright lanthanide-doped β-NaYF4 nano-bioprobes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hexagonal-phase NaYF4 (β-NaYF4) has been acknowledged to be one of the most efficient doping hosts to prepare bright lanthanide-doped luminescent nano-bioprobes for various biomedical applications. However, to date, it remains a great challenge to synthesize ultra-bright lanthanide-doped β-NaYF4 nano-bioprobes under a low reaction temperature by using conventional synthetic methods. Herein, we first develop an acetic acid (HAc)-mediated coprecipitation method for the preparation of ultra-bright lanthanide-doped β-NaYF4 nanoprobes under a low reaction temperature at 200 °C. Based on a series of comparative spectroscopic investigations, we show that the use of HAc in the reaction environment can not only promote the rapid α–β phase transformation of NaYF4 host at 200 °C within 1 h but also boost the absolute photoluminescence quantum yield (PLQY) of NaYF4 nanocrystals to 30.68% for near-infrared emission and to 3.79% for upconversion luminescence, both of which are amongst the highest values for diverse lanthanide-doped luminescent nanocrystals ever reported. By virtue of their superior near-infrared luminescence, we achieve optical-guided dynamic vasculature imaging in vivo of the whole body at a high spatial resolution (23.8 µm) under 980 nm excitation, indicating its potential for the diagnosis and treatment evaluation of vasculature-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, Q. Q.; Wang, J.; Li, Z. H.; Lv, X. B.; Liang, L.; Yuan, Q. Recent progress in time-resolved biosensing and bioimaging based on lanthanide-doped nanoparticles. Small 2019, 15, 1804969.

    Google Scholar 

  2. Zhou, J. J.; Del Rosal, B.; Jaque, D.; Uchiyama, S.; Jin, D. Y. Advances and challenges for fluorescence nanothermometry. Nat. Methods 2020, 17, 967–980.

    CAS  Google Scholar 

  3. Sun, G. T.; Xie, Y.; Sun, L. N.; Zhang, H. J. Lanthanide upconversion and downshifting luminescence for biomolecules detection. Nanoscale Horiz. 2021, 6, 766–780.

    CAS  Google Scholar 

  4. Li, C. Y.; Chen, G. C.; Zhang, Y. J.; Wu, F.; Wang, Q. B. Advanced fluorescence imaging technology in the near-infrared-ii window for biomedical applications. J. Am. Chem. Soc. 2020, 142, 14789–14804.

    CAS  Google Scholar 

  5. Xu, C.; Pu, K. Y. Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 2021, 50, 1111–1137.

    CAS  Google Scholar 

  6. Lei, Z. H.; Zhang, F. Molecular engineering of NIR-II fluorophores for improved biomedical detection. Angew. Chem., Int. Ed. 2021, 60, 16294–16308.

    CAS  Google Scholar 

  7. Zhang, H. X.; Chen, Z. H.; Liu, X.; Zhang, F. A mini-review on recent progress of new sensitizers for luminescence of lanthanide doped nanomaterials. Nano Res. 2020, 13, 1795–1809.

    CAS  Google Scholar 

  8. Li, H.; Wang, X.; Ohulchanskyy, T. Y.; Chen, G. Y. Lanthanide-doped near-infrared nanoparticles for biophotonics. Adv. Mater. 2021, 33, 2000678.

    CAS  Google Scholar 

  9. Yi, Z. G.; Luo, Z. C.; Qin, X.; Chen, Q. S.; Liu, X. G. Lanthanide-activated nanoparticles: A toolbox for bioimaging, therapeutics, and neuromodulation. Acc. Chem. Res. 2020, 53, 2692–2704.

    CAS  Google Scholar 

  10. Zhong, Y. T.; Dai, H. J. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems. Nano Res. 2020, 13, 1281–1294.

    CAS  Google Scholar 

  11. Nexha, A.; Carvajal, J. J.; Pujol, M. C.; Díaz, F.; Aguiló, M. Lanthanide doped luminescence nanothermometers in the biological windows: Strategies and applications. Nanoscale 2021, 13, 7913–7987.

    CAS  Google Scholar 

  12. Jia, M. C.; Chen, X.; Sun, R. R.; Wu, D.; Li, X. J.; Shi, Z. F.; Chen, G. Y.; Shan, C. X. Lanthanide-based ratiometric luminescence nanothermometry. Nano Res. 2022, 16, 2949–2967.

    Google Scholar 

  13. Yu, C. C.; Li, K.; Xu, L.; Li, B.; Li, C. H.; Guo, S.; Li, Z. Y.; Zhang, Y. Q.; Hussain, A.; Tan, H. et al. siRNA-functionalized lanthanide nanoparticle enables efficient endosomal escape and cancer treatment. Nano Res. 2022, 15, 9160–9168.

    CAS  Google Scholar 

  14. Xu, J. T.; Zhou, J. J.; Chen, Y. H.; Yang, P. P.; Lin, J. Lanthanide-activated nanoconstructs for optical multiplexing. Coord. Chem. Rev. 2020, 415, 213328.

    CAS  Google Scholar 

  15. Zheng, X.; Kankala, R. K.; Liu, C. G.; Wang, S. B.; Chen, A. Z.; Zhang, Y. Lanthanides-doped near-infrared active upconversion nanocrystals: Upconversion mechanisms and synthesis. Coord. Chem. Rev. 2021, 438, 213870.

    CAS  Google Scholar 

  16. Liu, S. B.; Yan, L.; Huang, J. S.; Zhang, Q. Y.; Zhou, B. Controlling upconversion in emerging multilayer core-shell nanostructures: From fundamentals to frontier applications. Chem. Soc. Rev. 2022, 51, 1729–1765.

    CAS  Google Scholar 

  17. Runowski, M.; Stopikowska, N.; Szeremeta, D.; Goderski, S.; Skwierczyńska, M.; Lis, S. Upconverting lanthanide fluoride core@shell nanorods for luminescent thermometry in the first and second biological windows: β-NaYF4:Yb3+−Er3+@SiO2 temperature sensor. ACS Appl. Mater. Interfaces 2019, 11, 13389–13396.

    CAS  Google Scholar 

  18. Chen, B.; Wang, F. Recent advances in the synthesis and application of Yb-based fluoride upconversion nanoparticles. Inorg. Chem. Front. 2020, 7, 1067–1081.

    CAS  Google Scholar 

  19. Zheng, B. Z.; Fan, J. Y.; Chen, B.; Qin, X.; Wang, J.; Wang, F.; Deng, R. R.; Liu, X. G. Rare-earth doping in nanostructured inorganic materials. Chem. Rev. 2022, 122, 5519–5603.

    CAS  Google Scholar 

  20. Loo, J. F. C.; Chien, Y. H.; Yin, F.; Kong, S. K.; Ho, H. P.; Yong, K. T. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coord. Chem. Rev. 2019, 400, 213042.

    CAS  Google Scholar 

  21. Mohanty, S.; Kaczmarek, A. M. Unravelling the benefits of transition-metal-co-doping in lanthanide upconversion nanoparticles. Chem. Soc. Rev. 2022, 51, 6893–6908.

    CAS  Google Scholar 

  22. Luo, W.; Xu, F.; Li, A. H.; Sun, Z. J. Resonant control and enhancement of upconversion luminescence of NaYF4:Yb,Er nanoparticles on metal gratings. Adv. Opt. Mater. 2022, 10, 2102668.

    CAS  Google Scholar 

  23. Zhang, F.; Li, J.; Shan, J.; Xu, L.; Zhao, D. Y. Shape, size, and phase-controlled rare-earth fluoride nanocrystals with optical upconversion properties. Chem. —Eur. J. 2009, 15, 11010–11019.

    CAS  Google Scholar 

  24. Zhang, C.; Sun, L. D.; Zhang, Y. W.; Yan, C. H. Rare earth upconversion nanophosphors: Synthesis, functionalization and application as biolabels and energy transfer donors. J. Rare Earths 2010, 28, 807–819.

    CAS  Google Scholar 

  25. Cao, T. Y.; Yang, Y.; Gao, Y. A.; Zhou, J.; Li, Z. Q.; Li, F. Y. High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging. Biomaterials 2011, 32, 2959–2968.

    CAS  Google Scholar 

  26. Wang, G. F.; Peng, Q.; Li, Y. D. Lanthanide-doped nanocrystals: Synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 2011, 44, 322–332.

    Google Scholar 

  27. Chang, H. J.; Xie, J.; Zhao, B. Z.; Liu, B. T.; Xu, S. L.; Ren, N.; Xie, X. J.; Huang, L.; Huang, W. Rare earth ion-doped upconversion nanocrystals: Synthesis and surface modification. Nanomaterials 2015, 5, 1–25.

    CAS  Google Scholar 

  28. Li, Y. B.; Li, X. L.; Xue, Z. L.; Jiang, M. Y.; Zeng, S. J.; Hao, J. H. M2+ doping induced simultaneous phase/size control and remarkable enhanced upconversion luminescence of NaLnF4 probes for optical-guided tiny tumor diagnosis. Adv. Healthc. Mater. 2017, 6, 1601231.

    Google Scholar 

  29. Sun, Y. J.; Chen, Y.; Tian, L. J.; Yu, Y.; Kong, X. G.; Zhao, J. W.; Zhang, H. Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb,Er nanocrystals. Nanotechnology 2007, 18, 275609.

    Google Scholar 

  30. Tian, Q.; Tao, K.; Li, W. W.; Sun, K. Hot-injection approach for two-stage formed hexagonal NaYF4:Yb,Er nanocrystals. J. Phys. Chem. C 2011, 115, 22886–22892.

    CAS  Google Scholar 

  31. Niu, N.; He, F.; Gai, S. L.; Li, C. X.; Zhang, X.; Huang, S. H.; Yang, P. P. Rapid microwave reflux process for the synthesis of pure hexagonal NaYF4: Yb3+, Ln3+, Bi3+ (Ln3+ = Er3+, Tm3+, Ho3+) and its enhanced UC luminescence. J. Mater. Chem. 2012, 22, 21613–21623.

    CAS  Google Scholar 

  32. Sui, Y. Q.; Tao, K.; Tian, Q.; Sun, K. Interaction between Y3+ and oleate ions for the cubic-to-hexagonal phase transformation of NaYF4 nanocrystals. J. Phys. Chem. C 2012, 116, 1732–1739.

    CAS  Google Scholar 

  33. Chen, Y. S.; He, W.; Wang, H. H.; Hao, X. L.; Jiao, Y. C.; Lu, J. X.; Yang, S. E. Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%),Er(1%) microcrystals. J. Lumin. 2012, 132, 2404–2408.

    CAS  Google Scholar 

  34. Wang, Z.; Feng, J.; Pang, M.; Pan, S. H.; Zhang, H. J. Multicolor and bright white upconversion luminescence from rice-shaped lanthanide doped BiPO4 submicron particles. Dalton Trans. 2013, 42, 12101–12108.

    CAS  Google Scholar 

  35. Lin, H.; Xu, D. K.; Li, A. M.; Teng, D. D.; Yang, S. H.; Zhang, Y. L. Tuning of structure and enhancement of upconversion luminescence in NaLuF4:Yb3+,Ho3+ crystals. Phys. Chem. Chem. Phys. 2015, 17, 19515–19526.

    CAS  Google Scholar 

  36. Zhu, Y. S.; Xu, W.; Cui, S. B.; Liu, M.; Lu, C.; Song, H. W.; Kim, D. H. Correction: Controlled size and morphology, and phase transition of YF3:Yb3+,Er3+ and YOF:Yb3+,Er3+ nanocrystals for fine color tuning. J. Mater. Chem. C 2016, 4, 638.

    CAS  Google Scholar 

  37. Zhai, X. S.; Chen, X. L.; Wang, S. Q.; Sun, W.; Du, J. Z.; Zhang, C. C.; Ren, T. Y.; Zhang, Q. F.; Feng, J. Synthesis of small-sized hexagonal NaREF4 (RE = Yb, Lu) nanocrystals through accelerating phase transformation. J. Lumin. 2022, 244, 118694.

    CAS  Google Scholar 

  38. Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065.

    CAS  Google Scholar 

  39. Janjua, R. A.; Gao, C.; Dai, R. C.; Sui, Z. L.; Raja, M. A. A.; Wang, Z. P.; Zhen, X. X.; Zhang, Z. M. Na+-driven nucleation of NaYF4:Yb,Er nanocrystals and effect of temperature on their structural transformations and luminescent properties. J. Phys. Chem. C 2018, 122, 23242–23250.

    CAS  Google Scholar 

  40. Wang, X.; Zhang, P.; Wang, L. L.; Lan, M.; Yang, Y. Z.; Yang, C. Phase evolution and upconversion luminescence enhancement investigation from YF3 to (α+β)-NaYF4 by doping of Cu2+ ion. Mater. Lett. 2018, 218, 80–82.

    CAS  Google Scholar 

  41. Saha, S.; Pala, R. G. S.; Sivakumar, S. Catalyzing cubic-to-hexagonal phase transition in NaYF4 via ligand enhanced surface ordering. Cryst. Growth Des. 2018, 18, 5080–5088.

    CAS  Google Scholar 

  42. Yang, D. D.; Pan, Q. W.; Kang, S. L.; Dong, G. P.; Qiu, J. R. Weakening thermal quenching to enhance luminescence of Er3+ doped β-NaYF4 nanocrystals via acid-treatment. J. Am. Ceram. Soc. 2019, 102, 6027–6037.

    Google Scholar 

  43. Wu, S. L.; Liu, Y.; Chang, J.; Ning, Y. H.; Zhang, S. F. β-NaYF4:Yb3+,Er3+ upconversion microcrystals with both high emission intensity and controlled morphology. Laser Photon. Rev. 2014, 8, 575–582.

    CAS  Google Scholar 

  44. Feng, Y.; Shao, B. Q.; Song, Y.; Zhao, S.; Huo, J. S.; Lu, W.; You, H. P. Fast synthesis of β-NaYF4:Ln3+ (Ln = Yb/Er, Yb/Tm) upconversion nanocrystals via a topotactic transformation route. Crystengcomm 2016, 18, 7601–7606.

    CAS  Google Scholar 

  45. Yan, J.; Yao, H. H.; Li, J. H.; He, S. M.; Wu, Q. L.; Yang, X. F.; Khan, W. U.; Shi, J. X.; Wu, M. M. Hexagonal β-Na(Y,Yb)F4 based core/shell nanorods: Epitaxial growth, enhanced and tailored upconversion emission. RSC Adv. 2017, 7, 19205–19210.

    CAS  Google Scholar 

  46. Liang, X.; Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. Synthesis of NaYF4 nanocrystals with predictable phase and shape. Adv. Funct. Mater. 2007, 17, 2757–2765.

    CAS  Google Scholar 

  47. Wu, W.; Yang, Y. Q.; Yang, Y.; Yang, Y. M.; Zhang, K. Y.; Guo, L.; Ge, H. F.; Chen, X. W.; Liu, J.; Feng, H. Molecular engineering of an organic NIR-II fluorophore with aggregation-induced emission characteristics for in vivo imaging. Small 2019, 15, 1805549.

    Google Scholar 

  48. Li, Z. H.; Ding, X.; Cong, H. L.; Wang, S.; Yu, B.; Shen, Y. Q. Recent advances on inorganic lanthanide-doped NIR-II fluorescence nanoprobes for bioapplication. J. Lumin. 2020, 228, 117627.

    CAS  Google Scholar 

  49. Meng, X. D.; Pang, X. J.; Zhang, K.; Gong, C. C.; Yang, J. Y.; Dong, H. F.; Zhang, X. J. Recent advances in near-infrared-II fluorescence imaging for deep-tissue molecular analysis and cancer diagnosis. Small 2022, 18, 2202035.

    CAS  Google Scholar 

  50. Fan, Y.; Zhang, F. A new generation of NIR-II probes: Lanthanide-based nanocrystals for bioimaging and biosensing. Adv. Opt. Mater. 2019, 7, 1801417.

    Google Scholar 

  51. Zou, Q. L.; Marcelot, C.; Ratel-Ramond, N.; Yi, X. D.; Roblin, P.; Frenzel, F.; Resch-Genger, U.; Eftekhari, A.; Bouchet, A.; Coudret, C. et al. Heterogeneous oxysulfide@fluoride core/shell nanocrystals for upconversion-based nanothermometry. ACS Nano 2022, 16, 12107–12117.

    CAS  Google Scholar 

  52. Wei, Z.; Liu, Y. W.; Li, B.; Li, J. J.; Lu, S.; Xing, X. W.; Liu, K.; Wang, F.; Zhang, H. J. Correction: Rare-earth based materials: An effective toolbox for brain imaging, therapy, monitoring and neuromodulation. Light Sci. Appl. 2022, 11, 224.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fund of Fujian Science & Technology Innovation Laboratory for Optoelectronic Information (No. 2020ZZ114), the Key Research Program of Frontier Science CAS (No. QYZDY-SSW-SLH025), the National Natural Science Foundation of China (Nos. 21871256 and 12204481), the Natural Science Foundation of Fujian Province (No. 2022J01211422), and Fund of Advanced Energy Science and Technology Guangdong Laboratory (No. DJLTN0200/DJLTN0240).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianxi Ke, Yongsheng Liu or Maochun Hong.

Electronic Supplementary Material

12274_2023_5671_MOESM1_ESM.pdf

Acetic acid-mediated rapid cubic-to-hexagonal (α–β) phase transformation for ultra-bright lanthanide-doped β-NaYF4 nano-bioprobes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Ke, J., Li, G. et al. Acetic acid-mediated rapid cubic-to-hexagonal (α–β) phase transformation for ultra-bright lanthanide-doped β-NaYF4 nano-bioprobes. Nano Res. 16, 10026–10033 (2023). https://doi.org/10.1007/s12274-023-5671-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5671-5

Keywords

Navigation