Skip to main content

Advertisement

Log in

Membrane fusion reverse micelle platforms as potential oral nanocarriers for efficient internalization of free hydrophilic peptides

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 26 June 2023

This article has been updated

Abstract

Orally administered peptides or proteins are garnering increasing preference owing to their superiority in terms of patient compliance and convenience. However, the development of oral protein formulations has stalled due to the low bioavailability of macromolecules that encounter the aggressive gastrointestinal environment and harsh mucus villi barrier. Herein, we propose an ideal reverse micelle/self-emulsifying drug delivery system (RM/SEDDS) nanoplatform that is capable of improving the oral bioavailability of hydrophilic peptides by preventing enzymatic degradation and enhancing mucosal permeability. Upon the passage through the mucus, the self-emulsifying drug delivery system with optimal surface properties effectively penetrates the viscoelastic mucosal barrier, followed by the exposure of the inner reverse micelle amphipathic vectors, which autonomously form continua with the lipidic cell membrane and facilitate the internalization of drugs. This membrane-fusion mechanism inaugurates a new way for hydrophilic peptide delivery in the free form, circumventing the traditional impediments of the cellular internalization of nanocarriers and subsequent poor release of drugs. And more importantly, reverse micelles are not spatially specific to the laden drugs, which enables their delivery for a myriad of peptide clinical drugs. In conclusion, as an exquisitely designed nanoplatform, RM/SEDDS overcomes multiple physiological barriers and opens a new path for drug cellular entry, providing new prospects for the development of oral drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Hamman, J. H.; Enslin, G. M.; Kotzé, A. F. Oral delivery of peptide drugs: Barriers and developments. Biodrugs 2005, 19, 165–177.

    CAS  Google Scholar 

  2. Anselmo, A. C.; Gokarn, Y.; Mitragotri, S. Non-invasive delivery strategies for biologics. Nat. Rev. Drug Discov. 2019, 18, 19–40.

    CAS  Google Scholar 

  3. Maher, S.; Mrsny, R. J.; Brayden, D. J. Intestinal permeation enhancers for oral peptide delivery. Adv. Drug Deliv. Rev. 2016, 106, 277–319.

    CAS  Google Scholar 

  4. Durán-Lobato, M.; Niu, Z. G.; Alonso, M. J. Oral delivery of biologics for precision medicine. Adv. Mater. 2020, 32, 1901935.

    Google Scholar 

  5. Chen, G. Y.; Kang, W. R.; Li, W. Q.; Chen, S. M.; Gao, Y. F. Oral delivery of protein and peptide drugs: From non-specific formulation approaches to intestinal cell targeting strategies. Theranostics 2022, 12, 1419–1439.

    Google Scholar 

  6. Zhu, Q. G.; Chen, Z. J.; Paul, P. K.; Lu, Y.; Wu, W.; Qi, J. P. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm. Sin. B 2021, 11, 2416–2448.

    CAS  Google Scholar 

  7. Xiao, Y. F.; Tang, Z. M.; Wang, J. Q.; Liu, C.; Kong, N.; Farokhzad, O. C.; Tao, W. Oral insulin delivery platforms: Strategies to address the biological barriers. Angew. Chem., Int. Ed. 2020, 59, 19787–19795.

    CAS  Google Scholar 

  8. Dubey, S. K.; Parab, S.; Dabholkar, N.; Agrawal, M.; Singhvi, G.; Alexander, A.; Bapat, R. A.; Kesharwani, P. Oral peptide delivery: Challenges and the way ahead. Drug Discov. Today 2021, 26, 931–950.

    CAS  Google Scholar 

  9. Cao, Y. X.; Rewatkar, P.; Wang, R.; Hasnain, S. Z.; Popat, A.; Kumeria, T. Nanocarriers for oral delivery of biologics: Small carriers for big payloads. Trends Pharmacol. Sci. 2021, 42, 957–972.

    CAS  Google Scholar 

  10. Reinholz, J.; Landfester, K.; Mailänder, V. The challenges of oral drug delivery via nanocarriers. Drug Deliv. 2018, 25, 1694–1705.

    CAS  Google Scholar 

  11. Andretto, V.; Rosso, A.; Briancon, S.; Lollo, G. Nanocomposite systems for precise oral delivery of drugs and biologics. Drug Deliv. Transl. Res. 2021, 11, 445–470.

    CAS  Google Scholar 

  12. Liu, M. Y.; Wang, F. L.; Pu, C. F.; Tang, W. T.; Sun, Q. J. Nanoencapsulation of lutein within lipid-based delivery systems: Characterization and comparison of zein peptide stabilized nanoemulsion, solid lipid nanoparticle, and nano-structured lipid carrier. Food Chem. 2021, 358, 129840.

    CAS  Google Scholar 

  13. Matougui, N.; Boge, L.; Groo, A. C.; Umerska, A.; Ringstad, L.; Bysell, H.; Saulnier, P. Lipid-based nanoformulations for peptide delivery. Int. J. Pharm. 2016, 502, 80–97.

    CAS  Google Scholar 

  14. Twarog, C.; Fattah, S.; Heade, J.; Maher, S.; Fattal, E.; Brayden, D. J. Intestinal permeation enhancers for oral delivery of macromolecules: A comparison between salcaprozate sodium (SNAC) and sodium caprate (C10). Pharmaceutics 2019, 11, 78.

    CAS  Google Scholar 

  15. Zizzari, A. T.; Pliatsika, D.; Gall, F. M.; Fischer, T.; Riedl, R. New perspectives in oral peptide delivery. Drug Discov. Today 2021, 26, 1097–1105.

    CAS  Google Scholar 

  16. Chen, H.; Lu, Y.; Shi, S.; Zhang, Q.; Cao, X. L.; Sun, L.; An, D.; Zhang, X. J.; Kong, X. L.; Liu, J. P. Design and development of a new glucagon-like peptide-1 receptor agonist to obtain high oral bioavailability. Pharm. Res. 2022, 39, 1891–1906.

    CAS  Google Scholar 

  17. Twarog, C.; McCartney, F.; Harrison, S. M.; Illel, B.; Fattal, E.; Brayden, D. J. Comparison of the effects of the intestinal permeation enhancers, SNAC and sodium caprate (C10): Isolated rat intestinal mucosae and sacs. Eur. J. Pharm. Sci. 2021, 158, 105685.

    CAS  Google Scholar 

  18. Feigh, M.; Henriksen, K.; Andreassen, K. V.; Hansen, C.; Henriksen, J. E.; Beck-Nielsen, H.; Christiansen, C.; Karsdal, M. A. A novel oral form of salmon calcitonin improves glucose homeostasis and reduces body weight in diet-induced obese rats. Diabetes Obes. Metab. 2011, 13, 911–920.

    CAS  Google Scholar 

  19. Gonze, M. D.; Salartash, K.; Sternbergh III, W. C.; Baughman, R. A.; Leone-Bay, A.; Money, S. R. Orally administered unfractionated heparin with carrier agent is therapeutic for deep venous thrombosis. Circulation 2000, 101, 2658–2661.

    CAS  Google Scholar 

  20. Binkley, N.; Bolognese, M.; Sidorowicz-Bialynicka, A.; Vally, T.; Trout, R.; Miller, C.; Buben, C. E.; Gilligan, J. P.; Krause, D. S.; Oral Calcitonin in Postmenopausal Osteoporosis (ORACAL) Investigators. A phase 3 trial of the efficacy and safety of oral recombinant calcitonin: The Oral Calcitonin in Postmenopausal Osteoporosis (ORACAL) trial. J. Bone Miner. Res. 2022, 27, 1821–1829.

    Google Scholar 

  21. Lewis, A. L.; McEntee, N.; Holland, J.; Patel, A. Development and approval of rybelsus (oral semaglutide): Ushering in a new era in peptide delivery. Drug Deliv. Transl. Res. 2022, 12, 1–6.

    CAS  Google Scholar 

  22. Maher, S.; Brayden, D. J. Formulation strategies to improve the efficacy of intestinal permeation enhancers. Adv. Drug Deliv. Rev. 2021, 177, 113925.

    CAS  Google Scholar 

  23. Williams, A. C.; Barry, B. W. Penetration enhancers. Adv. Drug Deliv. Rev. 2004, 56, 603–618.

    CAS  Google Scholar 

  24. Maher, S.; Leonard, T. W.; Jacobsen, J.; Brayden, D. J. Safety and efficacy of sodium caprate in promoting oral drug absorption: From in vitro to the clinic. Adv. Drug Deliv. Rev. 2009, 61, 1427–1449.

    CAS  Google Scholar 

  25. Ita, K. B. Chemical penetration enhancers for transdermal drug delivery — success and challenges. Curr. Drug Deliv. 2015, 12, 645–651.

    CAS  Google Scholar 

  26. Correa, N. M.; Silber, J. J.; Riter, R. E.; Levinger, N. E. Nonaqueous polar solvents in reverse micelle systems. Chem. Rev. 2012, 112, 4569–4602.

    CAS  Google Scholar 

  27. Groo, A. C.; Matougui, N.; Umerska, A.; Saulnier, P. Reverse micelle-lipid nanocapsules: A novel strategy for drug delivery of the plectasin derivate AP138 antimicrobial peptide. Int. J. Nanomedicine 2018, 13, 7565–7574.

    CAS  Google Scholar 

  28. Eskici, G.; Axelsen, P. H. Amyloid beta peptide folding in reverse micelles. J. Am. Chem. Soc. 2017, 139, 9566–9575.

    CAS  Google Scholar 

  29. Wang, T.; Wang, N.; Song, H.; Xi, X. N.; Wang, J. A.; Hao, A. J.; Li, T. F. Preparation of an anhydrous reverse micelle delivery system to enhance oral bioavailability and anti-diabetic efficacy of berberine. Eur. J. Pharm. Sci. 2011, 44, 127–135.

    CAS  Google Scholar 

  30. Senske, M.; Smith, A. E.; Pielak, G. J. Protein stability in reverse micelles. Angew. Chem., Int. Ed. 2016, 55, 3586–3589.

    CAS  Google Scholar 

  31. Mishra, V.; Nayak, P.; Yadav, N.; Singh, M.; Tambuwala, M. M.; Aljabali, A. A. A. Orally administered self-emulsifying drug delivery system in disease management: Advancement and patents. Expert Opin. Drug Deliv. 2021, 18, 315–332.

    CAS  Google Scholar 

  32. Zhu, Y. J.; Ye, J.; Zhang, Q. Self-emulsifying drug delivery system improve oral bioavailability: Role of excipients and physico-chemical characterization. Pharm. Nanotechnol. 2020, 8, 290–301.

    CAS  Google Scholar 

  33. Bernkop-Schnurch, A.; Jalil, A. Do drug release studies from SEDDS make any sense. J. Control. Release 2018, 271, 55–59.

    Google Scholar 

  34. Gursoy, R. N.; Benita, S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother. 2004, 58, 173–182.

    Google Scholar 

  35. Lupo, N.; Tkadleckova, V. N.; Tkadlečková, M.; Laffleur, F.; Hetényi, G.; Kubová, K.; Bernkop-Schnürch, A. Self-emulsifying drug delivery systems: In vivo evaluation of their potential for oral vaccination. Acta Biomater. 2019, 94, 425–434.

    CAS  Google Scholar 

  36. Haddadzadegan, S.; Dorkoosh, F.; Bernkop-Schnürch, A. Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Adv. Drug Deliv. Rev. 2022, 182, 114097.

    CAS  Google Scholar 

  37. Rani, S.; Rana, R.; Saraogi, G. K.; Kumar, V.; Gupta, U. Self-emulsifying oral lipid drug delivery systems: Advances and challenges. AAPS PharmSciTech 2019, 20, 129.

    CAS  Google Scholar 

  38. Xian, M.; Wawrzyniak, P.; Ruckert, B.; Duan, S.; Meng, Y. F.; Sokolowska, M.; Globinska, A.; Zhang, L.; Akdis, M.; Akdis, C. A. Anionic surfactants and commercial detergents decrease tight junction barrier integrity in human keratinocytes. J. Allergy Clin. Immunol. 2016, 138, 890–893.e9.

    CAS  Google Scholar 

  39. Zheng, O.; Zhao, J. X.; Chen, R. T.; Fu, X. M. Aggregation of quaternary ammonium Gemini surfactants C12-s-C122Br in n-heptane/n-hexanol solution: Effect of the spacer chains on the critical reverse micelle concentrations. J. Colloid Interface Sci. 2006, 300, 310–313.

    CAS  Google Scholar 

  40. Greenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876–2890.

    CAS  Google Scholar 

  41. Andersen, N. H.; Brodsky, Y.; Neidigh, J. W.; Prickett, K. S. Medium-dependence of the secondary structure of exendin-4 and glucagon-like-peptide-1. Bioorg. Med. Chem. 2002, 10, 79–85.

    CAS  Google Scholar 

  42. Meunier, V.; Bourrié, M.; Berger, Y.; Fabre, G. The human intestinal epithelial cell line Caco-2; pharmacological and pharmacokinetic applications. Cell Biol. Toxicol. 1995, 11, 187–194.

    CAS  Google Scholar 

  43. Panse, N.; Gerk, P. M. The Caco-2 Model: Modifications and enhancements to improve efficiency and predictive performance. Int. J. Pharm. 2022, 624, 122004.

    CAS  Google Scholar 

  44. del Carmen Ponce de Leon-Rodriguez, M.; Guyot, J. P.; Laurent-Babot, C. Intestinal in vitro cell culture models and their potential to study the effect of food components on intestinal inflammation. Crit. Rev. Food Sci. Nutr. 2019, 59, 3648–3666.

    Google Scholar 

  45. Hilgendorf, C.; Spahn-Langguth, H.; Regårdh, C. G.; Lipka, E.; Amidon, G. L.; Langguth, P. Caco-2 versus Caco-2/HT29-MTX Co-cultured cell lines: Permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J. Pharm. Sci. 2000, 89, 63–75.

    CAS  Google Scholar 

  46. Kwon, M.; Lim, D. Y.; Lee, C. H.; Jeon, J. H.; Choi, M. K.; Song, I. S. Enhanced intestinal absorption and pharmacokinetic modulation of berberine and its metabolites through the inhibition of p-glycoprotein and intestinal metabolism in rats using a berberine mixed micelle formulation. Pharmaceutics 2020, 12, 882.

    CAS  Google Scholar 

  47. Zhang, X.; Dong, W.; Cheng, H. B.; Zhang, M. X.; Kou, Y. Q.; Guan, J.; Liu, Q. Y.; Gao, M. Y.; Wang, X. H.; Mao, S. R. Modulating intestinal mucus barrier for nanoparticles penetration by surfactants. Asian J. Pharm. Sci. 2019, 14, 543–551.

    Google Scholar 

  48. Cai, Y.; Liu, L.; Xia, M. Q.; Tian, C. L.; Wu, W. Q.; Dong, B. Q.; Chu, X. Q. SEDDS facilitate cinnamaldehyde crossing the mucus barrier: The perspective of mucus and Caco-2/HT29 co-culture models. Int. J. Pharm. 2022, 614, 121461.

    CAS  Google Scholar 

  49. Leonaviciute, G.; Bernkop-Schnürch, A. Self-emulsifying drug delivery systems in oral (poly)peptide drug delivery. Expert Opin. Drug Deliv 2015, 12, 1703–1716.

    CAS  Google Scholar 

  50. Bhattacharjee, S.; Mahon, E.; Harrison, S. M.; McGetrick, J.; Muniyappa, M.; Carrington, S. D.; Brayden, D. J. Nanoparticle passage through porcine jejunal mucus: Microfluidics and rheology. Nanomedicine 2017, 13, 863–873.

    CAS  Google Scholar 

  51. Wang, J. J.; Gou, W. Y.; Kim, D. S.; Strange, C.; Wang, H. J. Clathrin-mediated endocytosis of alpha-1 antitrypsin is essential for its protective function in islet cell survival. Theranostics 2019, 9, 3940–3951.

    CAS  Google Scholar 

  52. Suen, W. L. L.; Chau, Y. Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells. J. Pharm. Pharmacol. 2014, 66, 564–573.

    CAS  Google Scholar 

  53. Koivusalo, M.; Welch, C.; Hayashi, H.; Scott, C. C.; Kim, M.; Alexander, T.; Touret, N.; Hahn, K. M.; Grinstein, S. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J. Cell Biol. 2010, 188, 547–563.

    CAS  Google Scholar 

  54. Zhang, T.; Su, M.; Jiang, X. X.; Xue, Y. Q.; Zhang, J. X.; Zeng, X. Q.; Wu, Z.; Guo, Y. X.; Pan, D. D. Transepithelial transport route and liposome encapsulation of milk-derived ACE-inhibitory peptide Arg-Leu-Ser-Phe-Asn-Pro. J. Agric. Food Chem. 2019, 67, 5544–5551.

    CAS  Google Scholar 

  55. Gupta, M.; Tummala, R.; Ghosh, R. K.; Blumenthal, C.; Philip, K.; Bandyopadhyay, D.; Ventura, H.; Deedwania, P. An update on pharmacotherapies in diabetic dyslipidemia. Prog. Cardiovasc. Dis. 2019, 62, 334–341.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (No. 2022YFE0107800) and National Natural Science Foundation of China (Nos. 82073332, and 81673022). We thank Mengjie Yu at Bio-Ultrastructure Analysis Lab. of Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University for her technical assistance on transmission electron microscopy; Qin Han, Chenyu Yang, Juanli Xuan, and Dandan Song at the Center of Cryo-Electron Microscopy (CCEM), Zhejiang University for their technical assistance on confocal laser scanning microscopy and transmission electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Han.

Electronic supplementary material

12274_2023_5645_MOESM1_ESM.pdf

Membrane fusion reverse micelle platforms as potential oral nanocarriers for efficient internalization of free hydrophilic peptides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, M., Wu, L., Lu, Y. et al. Membrane fusion reverse micelle platforms as potential oral nanocarriers for efficient internalization of free hydrophilic peptides. Nano Res. 16, 9768–9780 (2023). https://doi.org/10.1007/s12274-023-5645-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5645-7

Keywords

Navigation