Skip to main content
Log in

Intrinsic effects of precursor functional groups on the Na storage performance in carbon anodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The oxygen-containing functional groups in disordered carbon anodes have been widely reported to influence the Na storage performance. However, the effect of original oxygen-containing groups in the precursors on the final structures and electrochemical performance is rarely studied. Herein, we used the anthraquinone derivatives with different oxygen-containing functional groups as precursors to make the disordered carbon anodes for Na-ion batteries (NIBs). Through comprehensive structural and electrochemical analyses, we found that the different types of functional groups in carbon precursors directly affect the cross-linking process during carbonization. The original precursors containing enough inter-chain oxygen or oxygen-containing functional groups with unsaturated bonds unattached to the ring are beneficial for the oxygen atoms to remain or cross-link in structure to result in more C–O–C group, forming nanovoids and disordered structure, which then determine the high performance of the carbon anodes in NIBs. This work highlights the importance of the type/content of functional groups in precursor and provides guidance for the future design of carbon anodes in NIBs from the perspective of precursor selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, P. F.; Yao, H. R.; Liu, X. Y.; Yin, Y. X.; Zhang, J. N.; Wen, Y. R.; Yu, X. Q.; Gu, L.; Guo, Y. G. Na+/vacancy disordering promises high-rate Na-ion batteries. Sci. Adv. 2018, 4, eaar6018.

    Google Scholar 

  2. Zhao, C. L.; Wang, Q. D.; Yao, Z. P.; Wang, J. L.; Sánchez-Lengeling, B.; Ding, F. X.; Qi, X. G.; Lu, Y. X.; Bai, X. D.; Li, B. H. et al. Rational design of layered oxide materials for sodium-ion batteries. Science 2020, 370, 708–711.

    CAS  Google Scholar 

  3. Dong, X. L.; Chen, L.; Liu, J. Y.; Haller, S.; Wang, Y. G.; Xia, Y. Y. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv. 2016, 2, e1501038.

    Google Scholar 

  4. Usiskin, R.; Lu, Y. X.; Popovic, J.; Law, M.; Balaya, P.; Hu, Y. S.; Maier, J. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 2021, 6, 1020–1035.

    CAS  Google Scholar 

  5. Park, H.; Kwon, J.; Choi, H.; Song, T.; Paik, U. Microstructural control of new intercalation layered titanoniobates with large and reversible d-spacing for easy Na+ ion uptake. Sci. Adv. 2017, 3, e1700509.

    Google Scholar 

  6. Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. L. From Li-ion batteries toward Na-ion chemistries: Challenges and opportunities. Adv. Energy Mater. 2020, 10, 2001310.

    CAS  Google Scholar 

  7. Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.

    CAS  Google Scholar 

  8. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    CAS  Google Scholar 

  9. Sun, J. H.; Sadd, M.; Edenborg, P.; Grönbeck, H.; Thiesen, P. H.; Xia, Z. Y.; Quintano, V.; Qiu, R.; Matic, A.; Palermo, V. Real-time imaging of Na+ reversible intercalation in “Janus” graphene stacks for battery applications. Sci. Adv. 2021, 7, eabf0812.

    CAS  Google Scholar 

  10. Xie, F.; Xu, Z.; Guo, Z. Y.; Lu, Y. X.; Chen, L. Q.; Titirici, M. M.; Hu, Y. S. Disordered carbon anodes for Na-ion batteries—Quo vadis. Sci. China Chem. 2021, 64, 1679–1692.

    CAS  Google Scholar 

  11. Zhao, L. F.; Hu, Z.; Lai, W. H.; Tao, Y.; Peng, J.; Miao, Z. C.; Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Hard carbon anodes: Fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv. Energy Mater. 2020, 11, 2002704.

    Google Scholar 

  12. Zhang, L. P.; Wang, W.; Lu, S. F.; Xiang, Y. Carbon anode materials: A detailed comparison between Na-ion and K-ion batteries. Adv. Energy Mater. 2021, 11, 2003640.

    CAS  Google Scholar 

  13. Sarkar, S.; Roy, S.; Hou, Y. L.; Sun, S. H.; Zhang, J. J.; Zhao, Y. F. Recent progress in amorphous carbon-based materials for anodes of sodium-ion batteries: Synthesis strategies, mechanisms, and performance. ChemSusChem 2021, 14, 3693–3723.

    CAS  Google Scholar 

  14. Saurel, D.; Orayech, B.; Xiao, B. W.; Carriazo, D.; Li, X. L.; Rojo, T. From charge storage mechanism to performance: A roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv. Energy Mater. 2018, 8, 1703268.

    Google Scholar 

  15. Dou, X. W.; Hasa, I.; Saurel, D.; Vaalma, C.; Wu, L. M.; Buchholz, D.; Bresser, D.; Komaba, S.; Passerini, S. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Mater. Today 2019, 23, 87–104.

    CAS  Google Scholar 

  16. Pei, Z. X.; Meng, Q. Q.; Wei, L.; Fan, J.; Chen, Y.; Zhi, C. Y. Toward efficient and high rate sodium-ion storage: A new insight from dopant-defect interplay in textured carbon anode materials. Energy Storage Mater. 2020, 28, 55–63.

    Google Scholar 

  17. Gomez-Martin, A.; Martinez-Fernandez, J.; Ruttert, M.; Winter, M.; Placke, T.; Ramirez-Rico, J. Correlation of structure and performance of hard carbons as anodes for sodium ion batteries. Chem. Mater. 2019, 31, 7288–7299.

    CAS  Google Scholar 

  18. Meng, Q. S.; Lu, Y. X.; Ding, F. X.; Zhang, Q. Q.; Chen, L. Q.; Hu, Y. S. Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett. 2019, 4, 2608–2612.

    CAS  Google Scholar 

  19. Wang, X. K.; Shi, J.; Mi, L. W.; Zhai, Y. P.; Zhang, J. Y.; Feng, X. M.; Wu, Z. J.; Chen, W. H. Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries. Rare Met. 2020, 39, 1053–1062.

    CAS  Google Scholar 

  20. Zhang, J. Y.; Gai, J. J.; Song, K. M.; Chen, W. H. Advances in electrode/electrolyte interphase for sodium-ion batteries from half cells to full cells. Cell Rep. Phys. Sci. 2022, 3, 100868.

    CAS  Google Scholar 

  21. Jiang, K. R.; Tan, X. H.; Zhai, S. L.; Cadien, K.; Li, Z. Carbon nanosheets derived from reconstructed lignin for potassium and sodium storage with low voltage hysteresis. Nano Res. 2021, 14, 4664–4673.

    CAS  Google Scholar 

  22. Li, Y. M.; Mu, L. Q.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. Energy Storage Mater. 2016, 2, 139–145.

    Google Scholar 

  23. Dahbi, M.; Kiso, M.; Kubota, K.; Horiba, T.; Chafik, T.; Hida, K.; Matsuyama, T.; Komaba, S. Synthesis of hard carbon from argan shells for Na-ion batteries. J. Mater. Chem. A 2017, 5, 9917–9928.

    CAS  Google Scholar 

  24. Lu, P. R.; Xia, J. L.; Dong, X. L. Rapid sodium-ion storage in hard carbon anode material derived from ganoderma lucidum residue with inherent open channels. ACS Sustainable Chem. Eng. 2019, 7, 14841–14847.

    CAS  Google Scholar 

  25. Xiao, L. F.; Lu, H. Y.; Fang, Y. J.; Sushko, M. L.; Cao, Y. L.; Ai, X. P.; Yang, H. X.; Liu, J. Low-defect and low-porosity hard carbon with high Coulombic efficiency and high capacity for practical sodium ion battery anode. Adv. Energy Mater. 2018, 8, 1703238.

    Google Scholar 

  26. Zhang, F.; Yao, Y. G.; Wan, J. Y.; Henderson, D.; Zhang, X. G.; Hu, L. B. High temperature carbonized grass as a high performance sodium ion battery anode. ACS Appl. Mater. Interfaces 2017, 9, 391–397.

    CAS  Google Scholar 

  27. Song, P.; Wei, S. Q.; Di, J.; Du, J.; Xu, W. J.; Liu, D. B.; Wang, C. D.; Qiao, S. C.; Cao, Y. Y.; Cui, Q. L. et al. Biomass-derived hard carbon microtubes with tunable apertures for high-performance sodium-ion batteries. Nano Res., in press, https://doi.org/10.1007/s12274-022-5154-0.

  28. Huang, S. F.; Li, Z. P.; Wang, B.; Zhang, J. J.; Peng, Z. Q.; Qi, R. J.; Wang, J.; Zhao, Y. F. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv. Funct. Mater. 2018, 28, 1706294.

    Google Scholar 

  29. Xie, F.; Niu, Y. S.; Zhang, Q. Q.; Guo, Z. Y.; Hu, Z. L.; Zhou, Q.; Xu, Z.; Li, Y. Q.; Yan, R. T.; Lu, Y. X. et al. Screening heteroatom configurations for reversible sloping capacity promises high-power Na-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202116394.

    CAS  Google Scholar 

  30. Ren, W. N.; Zhang, H. F.; Guan, C.; Cheng, C. W. Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv. Funct. Mater. 2017, 27, 1702116.

    Google Scholar 

  31. Zhang, H.; Zhang, G. H.; Li, Z. Q.; Qu, K.; Shi, H. M.; Zhang, Q. F.; Duan, H. G.; Jiang, J. H. Osiers-sprout-like heteroatom-doped carbon nanofibers as ultrastable anodes for lithium/sodium ion storage. Nano Res. 2018, 11, 3791–3801.

    CAS  Google Scholar 

  32. Li, Q.; Zhu, Y. Y.; Zhao, P. Y.; Yuan, C.; Chen, M. M.; Wang, C. Y. Commercial activated carbon as a novel precursor of the amorphous carbon for high-performance sodium-ion batteries anode. Carbon 2018, 129, 85–94.

    Google Scholar 

  33. Liang, J.; Zhu, G. Y.; Zhang, Y. Z.; Liang, H. F.; Huang, W. Conversion of hydroxide into carbon-coated phosphide using plasma for sodium ion batteries. Nano Res. 2022, 15, 2023–2029.

    CAS  Google Scholar 

  34. Lu, H. Y.; Chen, X. Y.; Jia, Y. L.; Chen, H.; Wang, Y. X.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Engineering Al2O3 atomic layer deposition: Enhanced hard carbon-electrolyte interface towards practical sodium ion batteries. Nano Energy 2019, 64, 103903.

    CAS  Google Scholar 

  35. Chen, W. M.; Chen, C. J.; Xiong, X. Q.; Hu, P.; Hao, Z. X.; Huang, Y. H. Coordination of surface-induced reaction and intercalation: Toward a high-performance carbon anode for sodium-ion batteries. Adv. Sci. 2017, 4, 1600500.

    Google Scholar 

  36. Olsson, E.; Cottom, J.; Au, H.; Titirici, M. M.; Cai, Q. Investigating the effect of edge and basal plane surface functionalisation of carbonaceous anodes for alkali metal (Li/Na/K) ion batteries. Carbon 2021, 177, 226–243.

    CAS  Google Scholar 

  37. Shao, W. L.; Hu, F. Y.; Zhang, T. P.; Liu, S. Y.; Song, C.; Li, N.; Weng, Z. H.; Wang, J. Y.; Jian, X. G. Engineering ultramicroporous carbon with abundant C=O as extended “slope-dominated” sodium ion battery anodes. ACS Sustainable Chem. Eng. 2021, 9, 9727–9739.

    CAS  Google Scholar 

  38. Chen, C.; Huang, Y.; Zhu, Y. D.; Zhang, Z.; Guang, Z. X.; Meng, Z. Y.; Liu, P. B. Nonignorable influence of oxygen in hard carbon for sodium ion storage. ACS Sustainable Chem. Eng. 2020, 8, 1497–1506.

    CAS  Google Scholar 

  39. Kang, Y. J.; Jung, S. C.; Choi, J. W.; Han, Y. K. Important role of functional groups for sodium ion intercalation in expanded graphite. Chem. Mater. 2015, 27, 5402–5406.

    CAS  Google Scholar 

  40. Song, M. X.; Yi, Z. L.; Xu, R.; Chen, J. P.; Cheng, J. Y.; Wang, Z. F.; Liu, Q. L.; Guo, Q. G.; Xie, L. J.; Chen, C. M. Towards enhanced sodium storage of hard carbon anodes: Regulating the oxygen content in precursor by low-temperature hydrogen reduction. Energy Storage Mater. 2022, 51, 620–629.

    Google Scholar 

  41. Zhao, H. Q.; Ye, J. Q.; Song, W.; Zhao, D.; Kang, M. M.; Shen, H. T.; Li, Z. Insights into the surface oxygen functional group-driven fast and stable sodium adsorption on carbon. ACS Appl. Mater. Interfaces 2020, 12, 6991–7000.

    CAS  Google Scholar 

  42. Wang, H.; Sun, F.; Qu, Z. B.; Wang, K. F.; Wang, L. J.; Pi, X. X.; Gao, J. H.; Zhao, G. B. Oxygen functional group modification of cellulose-derived hard carbon for enhanced sodium ion storage. ACS Sustainable Chem. Eng. 2019, 7, 18554–18565.

    CAS  Google Scholar 

  43. Xie, H. J.; Wu, Z. L.; Wang, Z. Y.; Qin, N.; Li, Y. Z.; Cao, Y. L.; Lu, Z. G. Solid electrolyte interface stabilization via surface oxygen species functionalization in hard carbon for superior performance sodium-ion batteries. J. Mater. Chem. A 2020, 8, 3606–3612.

    CAS  Google Scholar 

  44. Zhao, X.; Ding, Y.; Xu, Q.; Yu, X.; Liu, Y.; Shen, H. Low-temperature growth of hard carbon with graphite crystal for sodium-ion storage with high initial Coulombic efficiency: A general method. Adv. Energy Mater. 2019, 9, 1803648.

    Google Scholar 

  45. Xia, J. L.; Yan, D.; Guo, L. P.; Dong, X. L.; Li, W. C.; Lu, A. H. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage. Adv. Mater. 2020, 32, 2000447.

    CAS  Google Scholar 

  46. Zhang, S. W.; Lv, W.; Luo, C.; You, C. H.; Zhang, J.; Pan, Z. Z.; Kang, F. Y.; Yang, Q. H. Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries. Energy Storage Mater. 2016, 3, 18–23.

    Google Scholar 

  47. Li, Y. M.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J. Mater. Chem. A 2016, 4, 96–104.

    Google Scholar 

  48. Zhang, G. F.; Zhao, Y. B.; Yan, L.; Zhang, L. J.; Shi, Z. Q. Sycamore fruit seed-based hard carbon anode material with high cycle stability for sodium-ion battery. J. Mater. Sci.: Mater. Electron. 2021, 32, 5645–5654.

    CAS  Google Scholar 

  49. Li, Y. Q.; Lu, Y. X.; Meng, Q. S.; Jensen, A. C. S.; Zhang, Q. Q.; Zhang, Q. H.; Tong, Y. X.; Qi, Y. R.; Gu, L.; Titirici, M. M. et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv. Energy Mater. 2019, 9, 1902852.

    CAS  Google Scholar 

  50. Zhou, C. L.; Li, A.; Cao, B.; Chen, X. H.; Jia, M. Q.; Song, H. H. The non-ignorable impact of surface oxygen groups on the electrochemical performance of N/O dual-doped carbon anodes for sodium ion batteries. J. Electrochem. Soc. 2018, 165, A1447–A1454.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2022YFB3807800), the National Natural Science Foundation (NSFC) of China (Nos. 52122214 and 52072403), Youth Innovation Promotion Association of the Chinese Academy of Sciences (CAS) (No. 2020006), and One Hundred Talent Project of Institute of Physics, CAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Xie, Yaxiang Lu, Yuanjiang Pan or Yong-Sheng Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Xie, F., Lu, Y. et al. Intrinsic effects of precursor functional groups on the Na storage performance in carbon anodes. Nano Res. 16, 12579–12586 (2023). https://doi.org/10.1007/s12274-023-5643-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5643-9

Keywords

Navigation