Skip to main content
Log in

On-surface synthesis and edge states of NBN-doped zigzag graphene nanoribbons

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Zigzag graphene nanoribbons (ZGNRs) with spin-polarized edge states have potential applications in carbon-based spintronics. The electronic structure of ZGNRs can be effectively tuned by different widths or dopants, which requires delicately designed monomers. Here, we report the successful synthesis of ZGNR with a width of eight carbon zigzag lines and nitrogen-boron-nitrogen (NBN) motifs decorated along the zigzag edges (NBN-8-ZGNR) on Au (111) surface, which starts from a specially designed U-shaped monomer with preinstalled NBN units at the zigzag edge. Chemical-bond-resolved non-contact atomic force microscopy (nc-AFM) imaging confirms the zigzag-terminated edges and the existence of NBN dopants. The electronic states distributed along the zigzag edges have been revealed after a silicon-layer intercalation at the interface of NBN-8-ZGNR and Au (111). Our work enriches the ZGNR family with a new dopant and larger width, which provides more candidates for future carbon-based nanoelectronic and spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han, W.; Kawakami, R. K.; Gmitra, M.; Fabian, J. Graphene spintronics. Nat. Nanotechnol. 2014, 9, 794–807.

    Article  CAS  Google Scholar 

  2. Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954–17961.

    Article  CAS  Google Scholar 

  3. Han, P.; Akagi, K.; Canova, F. F.; Mutoh, H.; Shiraki, S.; Iwaya, K.; Weiss, P. S.; Asao, N.; Hitosugi, T. Bottom—up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 2014, 8, 9181–9187.

    Article  CAS  Google Scholar 

  4. Ruffieux, P.; Wang, S. Y.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492.

    Article  CAS  Google Scholar 

  5. Talirz, L.; Söde, H.; Dumslaff, T.; Wang, S. Y.; Sanchez-Valencia, J. R.; Liu, J.; Shinde, P.; Pignedoli, C. A.; Liang, L. B.; Meunier, V. et al. On-surface synthesis and characterization of 9-atom wide armchair graphene nanoribbons. ACS Nano 2017, 11, 1380–1388.

    Article  CAS  Google Scholar 

  6. Gröning, O.; Wang, S. Y.; Yao, X. L.; Pignedoli, C. A.; Barin, G. B.; Daniels, C.; Cupo, A.; Meunier, V.; Feng, X. L.; Narita, A. et al. Engineering of robust topological quantum phases in graphene nanoribbons. Nature 2018, 560, 209–213.

    Article  Google Scholar 

  7. Rizzo, D. J.; Veber, G.; Cao, T.; Bronner, C.; Chen, T.; Zhao, F. Z.; Rodriguez, H.; Louie, S. G.; Crommie, M. F.; Fischer, F. R. Topological band engineering of graphene nanoribbons. Nature 2018, 560, 204–208.

    Article  CAS  Google Scholar 

  8. Rizzo, D. J.; Veber, G.; Jiang, J. W.; McCurdy, R.; Cao, T.; Bronner, C.; Chen, T.; Louie, S. G.; Fischer, F. R.; Crommie, M. F. Inducing metallicity in graphene nanoribbons via zero-mode superlattices. Science 2020, 369, 1597–1603.

    Article  CAS  Google Scholar 

  9. Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom—up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.

    Article  CAS  Google Scholar 

  10. Liu, J. Z.; Li, B. W.; Tan, Y. Z.; Giannakopoulos, A.; Sanchez-Sanchez, C.; Beljonne, D.; Ruffieux, P.; Fasel, R.; Feng, X. L.; Müllen, K. Toward cove-edged low band gap graphene nanoribbons. J. Am. Chem. Soc. 2015, 137, 6097–6103.

    Article  CAS  Google Scholar 

  11. Senkovskiy, B. V.; Usachov, D. Y.; Fedorov, A. V.; Marangoni, T.; Haberer, D.; Tresca, C.; Profeta, G.; Caciuc, V.; Tsukamoto, S.; Atodiresei, N. et al. Boron-doped graphene nanoribbons: Electronic structure and Raman fingerprint. ACS Nano 2018, 12, 7571–7582.

    Article  CAS  Google Scholar 

  12. Sun, K. W.; Silveira, O. J.; Saito, S.; Sagisaka, K.; Yamaguchi, S.; Foster, A. S.; Kawai, S. Manipulation of spin polarization in boron-substituted graphene nanoribbons. ACS Nano 2022, 16, 11244–11250.

    Article  CAS  Google Scholar 

  13. Cloke, R. R.; Marangoni, T.; Nguyen, G. D.; Joshi, T.; Rizzo, D. J.; Bronner, C.; Cao, T.; Louie, S. G.; Crommie, M. F.; Fischer, F. R. Site-specific substitutional boron doping of semiconducting armchair graphene nanoribbons. J. Am. Chem. Soc. 2015, 137, 8872–8875.

    Article  CAS  Google Scholar 

  14. Blackwell, R. E.; Zhao, F. Z.; Brooks, E.; Zhu, J. M.; Piskun, I.; Wang, S. K.; Delgado, A.; Lee, Y. L.; Louie, S. G.; Fischer, F. R. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 2021, 600, 647–652.

    Article  CAS  Google Scholar 

  15. Cao, Y.; Qi, J.; Zhang, Y. F.; Huang, L.; Zheng, Q.; Lin, X.; Cheng, Z. H.; Zhang, Y. Y.; Feng, X. L.; Du, S. X. et al. Tuning the morphology of chevron-type graphene nanoribbons by choice of annealing temperature. Nano Res. 2018, 11, 6190–6196.

    Article  CAS  Google Scholar 

  16. Liu, X. M.; Li, G.; Lipatov, A.; Sun, T.; Mehdi Pour, M.; Aluru, N. R.; Lyding, J. W.; Sinitskii, A. Chevron-type graphene nanoribbons with a reduced energy band gap: Solution synthesis, scanning tunneling microscopy, and electrical characterization. Nano Res. 2020, 13, 1713–1722.

    Article  Google Scholar 

  17. Cai, J. M.; Pignedoli, C. A.; Talirz, L.; Ruffieux, P.; Söde, H.; Liang, L. B.; Meunier, V.; Berger, R.; Li, R. J.; Feng, X. L. et al. Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 2014, 9, 896–900.

    Article  CAS  Google Scholar 

  18. Pawlak, R.; Liu, X. S.; Ninova, S.; D’Astolfo, P.; Drechsel, C.; Sangtarash, S.; Häner, R.; Decurtins, S.; Sadeghi, H.; Lambert, C. J. et al. Bottom—up synthesis of nitrogen-doped porous graphene nanoribbons. J. Am. Chem. Soc. 2020, 142, 12568–12573.

    Article  CAS  Google Scholar 

  19. Wen, E. C. H.; Jacobse, P. H.; Jiang, J. W.; Wang, Z. Y.; McCurdy, R. D.; Louie, S. G.; Crommie, M. F.; Fischer, F. R. Magnetic interactions in substitutional core-doped graphene nanoribbons. J. Am. Chem. Soc. 2022, 144, 13696–13703.

    Article  CAS  Google Scholar 

  20. Kawai, S.; Saito, S.; Osumi, S.; Yamaguchi, S.; Foster, A. S.; Spijker, P.; Meyer, E. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 2015, 6, 8098.

    Article  CAS  Google Scholar 

  21. Yang, H.; Gao, Y. X.; Niu, W. H.; Chang, X.; Huang, L.; Liu, J. Z.; Mai, Y.; Feng, X. L.; Du, S. X.; Gao, H. J. Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au (111). Chin. Phys. B 2021, 30, 077306.

    Article  CAS  Google Scholar 

  22. Nguyen, G. D.; Toma, F. M.; Cao, T.; Pedramrazi, Z.; Chen, C.; Rizzo, D. J.; Joshi, T.; Bronner, C.; Chen, Y. C.; Favaro, M. et al. Bottom—up synthesis of N = 13 sulfur-doped graphene nanoribbons. J. Phys. Chem. C 2016, 120, 2684–2687.

    Article  CAS  Google Scholar 

  23. Chen, Y. C.; Cao, T.; Chen, C.; Pedramrazi, Z.; Haberer, D.; De Oteyza, D. G.; Fischer, F. R.; Louie, S. G.; Crommie, M. F. Molecular bandgap engineering of bottom—up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 2015, 10, 156–160.

    Article  CAS  Google Scholar 

  24. Senkovskiy, B. V.; Nenashev, A. V.; Alavi, S. K.; Falke, Y.; Hell, M.; Bampoulis, P.; Rybkovskiy, D. V.; Usachov, D. Y.; Fedorov, A. V.; Chernov, A. I. et al. Tunneling current modulation in atomically precise graphene nanoribbon heterojunctions. Nat. Commun. 2021, 12, 2542.

    Article  CAS  Google Scholar 

  25. Rizzo, D. J.; Wu, M.; Tsai, H. Z.; Marangoni, T.; Durr, R. A.; Omrani, A. A.; Liou, F.; Bronner, C.; Joshi, T.; Nguyen, G. D. et al. Length-dependent evolution of type II heterojunctions in bottom—up-synthesized graphene nanoribbons. Nano Lett. 2019, 19, 3221–3228.

    Article  CAS  Google Scholar 

  26. Nguyen, G. D.; Tsai, H. Z.; Omrani, A. A.; Marangoni, T.; Wu, M.; Rizzo, D. J.; Rodgers, G. F.; Cloke, R. R.; Durr, R. A.; Sakai, Y. et al. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor. Nat. Nanotechnol. 2017, 12, 1077–1082.

    Article  CAS  Google Scholar 

  27. Li, J. C.; Sanz, S.; Merino-Díez, N.; Vilas-Varela, M.; Garcia-Lekue, A.; Corso, M.; De Oteyza, D. G.; Frederiksen, T.; Peña, D.; Pascual, J. I. Topological phase transition in chiral graphene nanoribbons: From edge bands to end states. Nat. Commun. 2021, 12, 5538.

    Article  CAS  Google Scholar 

  28. Guo, G. P.; Lin, Z. R.; Tu, T.; Cao, G.; Li, X. P.; Guo, G. C. Quantum computation with graphene nanoribbon. New J. Phys. 2009, 11, 123005.

    Article  Google Scholar 

  29. Luis, F.; Coronado, E. Spinning on the edge of graphene. Nature 2018, 557, 645–647.

    Article  CAS  Google Scholar 

  30. Mandal, B.; Sarkar, S.; Pramanik, A.; Sarkar, P. Doped defective graphene nanoribbons: A new class of materials with novel spin filtering properties. RSC Adv. 2014, 4, 49946–49952.

    Article  CAS  Google Scholar 

  31. Berdonces-Layunta, A.; Lawrence, J.; Edalatmanesh, S.; Castro-Esteban, J.; Wang, T.; Mohammed, M. S. G.; Colazzo, L.; Peña, D.; Jelínek, P.; De Oteyza, D. G. Chemical stability of (3,1)-chiral graphene nanoribbons. ACS Nano 2021, 15, 5610–5617.

    Article  CAS  Google Scholar 

  32. Lawrence, J.; Berdonces-Layunta, A.; Edalatmanesh, S.; Castro-Esteban, J.; Wang, T.; Jimenez-Martin, A.; De La Torre, B.; Castrillo-Bodero, R.; Angulo-Portugal, P.; Mohammed, M. S. G. et al. Circumventing the stability problems of graphene nanoribbon zigzag edges. Nat. Chem. 2022, 14, 1451–1458.

    Article  CAS  Google Scholar 

  33. Fu, Y. B.; Yang, H.; Gao, Y. X.; Huang, L.; Berger, R.; Liu, J. Z.; Lu, H. L.; Cheng, Z. H.; Du, S. X.; Gao, H. J. et al. On-surface synthesis of NBN-doped zigzag-edged graphene nanoribbons. Angew. Chem., Int. Ed. 2020, 132, 8958–8964.

    Article  Google Scholar 

  34. Fu, Y. B.; Chang, X.; Yang, H.; Dmitrieva, E.; Gao, Y. X.; Ma, J.; Huang, L.; Liu, J. Z.; Lu, H. L.; Cheng, Z. H. et al. NBN-doped bis-tetracene and peri-tetracene: Synthesis and characterization. Angew. Chem., Int. Ed. 2021, 60, 26115–26121.

    Article  CAS  Google Scholar 

  35. Wang, X. Y.; Zhang, F.; Schellhammer, K. S.; Machata, P.; Ortmann, F.; Cuniberti, G.; Fu, Y. B.; Hunger, J.; Tang, R. Z.; Popov, A. A. et al. Synthesis of NBN-type zigzag-edged polycyclic aromatic hydrocarbons: 1,9-Diaza-9a-boraphenalene as a structural motif. J. Am. Chem. Soc. 2016, 138, 11606–11615.

    Article  CAS  Google Scholar 

  36. Mao, J. H.; Huang, L.; Pan, Y.; Gao, M.; He, J. F.; Zhou, H. T.; Guo, H. M.; Tian, Y.; Zou, Q.; Zhang, L. Z. et al. Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru (0001). Appl. Phys. Lett. 2012, 100, 093101.

    Article  Google Scholar 

  37. Li, G.; Zhou, H. T.; Pan, L. D.; Zhang, Y.; Huang, L.; Xu, W. Y.; Du, S. X.; Ouyang, M.; Ferrari, A. C.; Gao, H. J. Role of cooperative interactions in the intercalation of heteroatoms between graphene and a metal substrate. J. Am. Chem. Soc. 2015, 137, 7099–7103.

    Article  CAS  Google Scholar 

  38. Guo, H.; Wang, X. Y.; Huang, L.; Jin, X.; Yang, Z. Z.; Zhou, Z.; Hu, H.; Zhang, Y. Y.; Lu, H. L.; Zhang, Q. H. et al. Insulating SiO2 under centimeter-scale, single-crystal graphene enables electronic-device fabrication. Nano Lett. 2020, 20, 8584–8591.

    Article  CAS  Google Scholar 

  39. Deniz, O.; Sánchez-Sánchez, C.; Dumslaff, T.; Feng, X. L.; Narita, A.; Müllen, K.; Kharche, N.; Meunier, V.; Fasel, R.; Ruffieux, P. Revealing the electronic structure of silicon intercalated armchair graphene nanoribbons by scanning tunneling spectroscopy. Nano Lett. 2017, 17, 2197–2203.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by grants from the National Key Research and Development Program of China (No. 2019YFA0308500), the National Natural Science Foundation of China (No. 61888102), the Chinese Academy of Sciences (Nos. XDB30000000 and YSBR-003), the EU Graphene Flagship (Graphene Core 3, No. 881603), the H2020-MSCA-ITN (ULTIMATE, No. 813036), the Center for Advancing Electronics Dresden (CfAED), the H2020-EU.1.2.2.-FET Proactive Grant (LIGHT-CAP, No. 101017821), and the DFG-SNSF Joint Switzerland-German Research Project (EnhanTopo, No. 429265950).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Lin, Xinliang Feng, Shixuan Du or Hong-Jun Gao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, X., Huang, L., Gao, Y. et al. On-surface synthesis and edge states of NBN-doped zigzag graphene nanoribbons. Nano Res. 16, 10436–10442 (2023). https://doi.org/10.1007/s12274-023-5605-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5605-2

Keywords

Navigation