Skip to main content
Log in

Chevron-type graphene nanoribbons with a reduced energy band gap: Solution synthesis, scanning tunneling microscopy and electrical characterization

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphene nanoribbons (GNRs) attract a growing interest due to their tunable physical properties and promise for device applications. A variety of atomically precise GNRs have recently been synthesized by on-surface and solution approaches. While on-surface GNRs can be conveniently visualized by scanning tunneling microscopy (STM), and their electronic structure can be probed by scanning tunneling spectroscopy (STS), such characterization remains a great challenge for the solution-synthesized GNRs. Here, we report solution synthesis and detailed STM/STS characterization of atomically precise GNRs with a meandering shape that are structurally related to chevron GNRs but have a reduced energy band gap. The ribbons were synthesized by Ni0-mediated Yamamoto polymerization of specially designed molecular precursors using triflates as the leaving groups and oxidative cyclodehydrogenation of the resulting polymers using Scholl reaction. The ribbons were deposited onto III-V semiconducting InAs(110) substrates by a dry contact transfer technique. High-resolution STM/STS characterization not only confirmed the GNR geometry, but also revealed details of electronic structure including energy states, electronic band gap, as well as the spatial distribution of the local density of states. The experimental STS band gap of GNRs is about 2 eV, which is very close to 2.35 eV predicted by the density functional theory simulations with GW correction, indicating a weak screening effect of InAs(110) substrate. Furthermore, several aspects of GNR-InAs(110) substrate interactions were also probed and analyzed, including GNR tunable transparency, alignment to the substrate, and manipulations of GNR position by the STM tip. The weak interaction between the GNRs and the InAs(110) surface makes InAs(110) an ideal substrate for investigating the intrinsic properties of GNRs. Because of the reduced energy band gap of these ribbons, the GNR thin films exhibit appreciably high electrical conductivity and on/off ratios of about 10 in field-effect transistor measurements, suggesting their promise for device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B1996, 54, 17954–17961.

    Article  CAS  Google Scholar 

  2. Yang, L.; Park, C. H.; Son, Y. W.; Cohen, M. L.; Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 2007, 99, 186801.

    Article  CAS  Google Scholar 

  3. Barone, V.; Hod, O.; Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 2006, 6, 2748–2754.

    Article  CAS  Google Scholar 

  4. Schwab, M. G.; Narita, A.; Hernandez, Y.; Balandina, T.; Mali, K. S.; De Feyter, S.; Feng, X. L.; Müllen, K. Structurally defined graphene nanoribbons with high lateral extension. J. Am. Chem. Soc. 2012, 134, 18169–18172.

    Article  CAS  Google Scholar 

  5. Vo, T. H.; Shekhirev, M.; Kunkel, D. A.; Morton, M. D.; Berglund, E.; Kong, L. M.; Wilson, P. M.; Dowben, P. A.; Enders, A.; Sinitskii, A. Large-scale solution synthesis of narrow graphene nanoribbons. Nat. Commun. 2014, 5, 3189.

    Article  CAS  Google Scholar 

  6. Huang, Y. J.; Mai, Y. Y.; Beser, U.; Teyssandier, J.; Velpula, G.; van Gorp, H.; Straasø, L. A.; Hansen, M. R.; Rizzo, D.; Casiraghi, C. et al. Poly(ethylene oxide) functionalized graphene nanoribbons with excellent solution processability. J. Am. Chem. Soc. 2016, 138, 10136–10139.

    Article  CAS  Google Scholar 

  7. Mehdi Pour, M.; Lashkov, A.; Radocea, A.; Liu, X. M.; Sun, T.; Lipatov, A.; Korlacki, R. A.; Shekhirev, M.; Aluru, N. R.; Lyding, J. W. et al. Laterally extended atomically precise graphene nanoribbons with improved electrical conductivity for efficient gas sensing. Nat. Commun. 2017, 8, 820.

    Article  CAS  Google Scholar 

  8. Yang, X. Y.; Dou, X.; Rouhanipour, A.; Zhi, L. J.; Ra¨der, H. J.; Müllen, K. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 2008, 130, 4216–4217.

    Article  CAS  Google Scholar 

  9. Yang, W. L.; Lucotti, A.; Tommasini, M.; Chalifoux, W. A. Bottom-up synthesis of soluble and narrow graphene nanoribbons using alkyne benzannulations. J. Am. Chem. Soc. 2016, 138, 9137–9144.

    Article  CAS  Google Scholar 

  10. Li, G.; Yoon, K. Y.; Zhong, X. J.; Zhu, X. Y.; Dong, G. B. Efficient bottom-up preparation of graphene nanoribbons by mild suzuki–miyaura polymerization of simple triaryl monomers. Chem. — Eur. J. 2016, 22, 9116–9120.

    Article  CAS  Google Scholar 

  11. Li, G.; Yoon, K. Y.; Zhong, X. J.; Wang, J. C.; Zhang, R.; Guest, J. R.; Wen, J. G.; Zhu, X. Y.; Dong, G. B. A modular synthetic approach for band-gap engineering of armchair graphene nanoribbons. Nat. Commun. 2018, 9, 1687.

    Article  CAS  Google Scholar 

  12. Kim, K. T.; Jung, J. W.; Jo, W. H. Synthesis of graphene nanoribbons with various widths and its application to thin-film transistor. Carbon2013, 63, 202–209.

    Article  CAS  Google Scholar 

  13. Daigle, M.; Miao, D. D.; Lucotti, A.; Tommasini, M.; Morin, J. F. Helically coiled graphene nanoribbons. Angew. Chem., Int. Ed. 2017, 56, 6213–6217.

    Article  CAS  Google Scholar 

  14. Fogel, Y.; Zhi, L. J.; Rouhanipour, A.; Andrienko, D.; Ra¨der, H. J.; Mu¨llen, K. Graphitic nanoribbons with dibenzo[e, l]pyrene repeat units: Synthesis and self-assembly. Macromolecules2009, 42, 6878–6884.

    Article  CAS  Google Scholar 

  15. Narita, A.; Feng, X. L.; Hernandez, Y.; Jensen, S. A.; Bonn, M.; Yang, H. F.; Verzhbitskiy, I. A.; Casiraghi, C.; Hansen, M. R.; Koch, A. H. R. et al. Synthesis of structurally well-defined and liquid-phaseprocessable graphene nanoribbons. Nat. Chem. 2014, 6, 126–132.

    Article  CAS  Google Scholar 

  16. Narita, A.; Verzhbitskiy, I. A.; Frederickx, W.; Mali, K. S.; Jensen, S. A.; Hansen, M. R.; Bonn, M.; De Feyter, S.; Casiraghi, C.; Feng, X. L. et al. Bottom-up synthesis of liquid-phase-processable graphene nanoribbons with near-infrared absorption. ACS Nano2014, 8, 11622–11630.

    Article  CAS  Google Scholar 

  17. Hu, Y. B.; Xie, P.; De Corato, M.; Ruini, A.; Zhao, S.; Meggendorfer, F.; Straasø, L. A.; Rondin, L.; Simon, P.; Li, J. et al. Bandgap engineering of graphene nanoribbons by control over structural distortion. J. Am. Chem. Soc. 2018, 140, 7803–7809.

    Article  CAS  Google Scholar 

  18. Narita, A.; Wang, X. Y.; Feng, X. L.; Müllen, K. New advances in nanographene chemistry. Chem. Soc. Rev. 2015, 44, 6616–6643.

    Article  CAS  Google Scholar 

  19. Shekhirev, M.; Sinitskii, A., Solution synthesis of atomically precise graphene nanoribbons. In Chemistry of Carbon Nanostructures. Müllen, K.; Feng, X., Eds.; De Gruyter: Berlin, 2017; pp 194–225.

  20. Abbas, A. N.; Liu, G.; Narita, A.; Orosco, M.; Feng, X. L.; Müllen, K.; Zhou, C. W. Deposition, characterization, and thin-film-based chemical sensing of ultra-long chemically synthesized graphene nanoribbons. J. Am. Chem. Soc. 2014, 136, 7555–7558.

    Article  CAS  Google Scholar 

  21. Gao, J.; Uribe-Romo, F. J.; Saathoff, J. D.; Arslan, H.; Crick, C. R.; Hein, S. J.; Itin, B.; Clancy, P.; Dichtel, W. R.; Loo, Y. L. Ambipolar transport in solution-synthesized graphene nanoribbons. ACS Nano2016, 10, 4847–4856.

    Article  CAS  Google Scholar 

  22. Shekhirev, M.; Vo, T. H.; Mehdi Pour, M.; Lipatov, A.; Munukutla, S.; Lyding, J. W.; Sinitskii, A. Interfacial self-assembly of atomically precise graphene nanoribbons into uniform thin films for electronics applications. ACS Appl. Mater. Interfaces2017, 9, 693–700.

    Article  CAS  Google Scholar 

  23. Zschieschang, U.; Klauk, H.; Müeller, I. B.; Strudwick, A. J.; Hintermann, T.; Schwab, M. G.; Narita, A.; Feng, X. L.; Müellen, K.; Weitz, R. T. Electrical characteristics of field-effect transistors based on chemically synthesized graphene nanoribbons. Adv. Electron. Mater. 2015, 1, 1400010.

    Article  CAS  Google Scholar 

  24. Shekhirev, M.; Vo, T. H.; Kunkel, D. A.; Lipatov, A.; Enders, A.; Sinitskii, A. Aggregation of atomically precise graphene nanoribbons. RSC Adv. 2017, 7, 54491–54499.

    Article  CAS  Google Scholar 

  25. Konnerth, R.; Cervetti, C.; Narita, A.; Feng, X.; Müllen, K.; Hoyer, A.; Burghard, M.; Kern, K.; Dressel, M.; Bogani, L. Tuning the deposition of molecular graphene nanoribbons by surface functionalization. Nanoscale2015, 7, 12807–12811.

    Article  CAS  Google Scholar 

  26. Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature2010, 466, 470–473.

    Article  CAS  Google Scholar 

  27. Vo, T. H.; Perera, U. G. E.; Shekhirev, M.; Mehdi Pour, M.; Kunkel, D. A.; Lu, H. D.; Gruverman, A.; Sutter, E.; Cotlet, M.; Nykypanchuk, D. et al. Nitrogen-doping induced self-assembly of graphene nanoribbon-based two-dimensional and three-dimensional metamaterials. Nano Lett. 2015, 15, 5770–5777.

    Article  CAS  Google Scholar 

  28. Wang, S. D.; Wang, J. L. Quasiparticle energies and optical excitations in chevron-type graphene nanoribbon. J. Phys. Chem. C2012, 116, 10193–10197.

    Article  CAS  Google Scholar 

  29. Liang, L. B.; Meunier, V. Electronic structure of assembled graphene nanoribbons: Substrate and many-body effects. Phys. Rev. B2012, 86, 195404.

    Article  CAS  Google Scholar 

  30. Radocea, A.; Sun, T.; Vo, T. H.; Sinitskii, A.; Aluru, N. R.; Lyding, J. W. Solution-synthesized chevron graphene nanoribbons exfoliated onto H:Si(100). Nano Lett. 2017, 17, 170–178.

    Article  CAS  Google Scholar 

  31. Teeter, J. D.; Zahl, P.; Mehdi Pour, M.; Costa, P. S.; Enders, A.; Sinitskii, A. On-surface synthesis and spectroscopic characterization of laterally extended chevron graphene nanoribbons. ChemPhysChem2019, 20, 2281–2285.

    Article  CAS  Google Scholar 

  32. Huang, Y. J.; Xu, F. G.; Ganzer, L.; Camargo, F. V. A.; Nagahara, T.; Teyssandier, J.; van Gorp, H.; Basse, K.; Straasø, L. A.; Nagyte, V. et al. Intrinsic properties of single graphene nanoribbons in solution: Synthetic and spectroscopic studies. J. Am. Chem. Soc. 2018, 140, 10416–10420.

    Article  CAS  Google Scholar 

  33. Huang, Y. J.; Dou, W. T.; Xu, F. G.; Ru, H. B.; Gong, Q. Y.; Wu, D. Q.; Yan, D. Y.; Tian, H.; He, X. P.; Mai, Y. Y. et al. Supramolecular nanostructures of structurally defined graphene nanoribbons in the aqueous phase. Angew. Chem., Int. Ed. 2018, 57, 3366–3371.

    Article  CAS  Google Scholar 

  34. Ruffieux, P.; Cai, J. M.; Plumb, N. C.; Patthey, L.; Prezzi, D.; Ferretti, A.; Molinari, E.; Feng, X. L.; Müllen, K.; Pignedoli, C. A. et al. Electronic structure of atomically precise graphene nanoribbons. ACS Nano2012, 6, 6930–6935.

    Article  CAS  Google Scholar 

  35. Llinas, J. P.; Fairbrother, A.; Borin Barin, G.; Shi, W.; Lee, K.; Wu, S.; Yong Choi, B.; Braganza, R.; Lear, J.; Kau, N. et al. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 2017, 8, 633.

    Article  CAS  Google Scholar 

  36. Chen, Y. C.; de Oteyza, D. G.; Pedramrazi, Z.; Chen, C.; Fischer, F. R.; Crommie, M. F. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano2013, 7, 6123–6128.

    Article  CAS  Google Scholar 

  37. Talirz, L.; Söde, H.; Dumslaff, T.; Wang, S. Y.; Sanchez-Valencia, J. R.; Liu, J.; Shinde, P.; Pignedoli, C. A.; Liang, L. B.; Meunier, V. et al. On-surface synthesis and characterization of 9-atom wide armchair graphene nanoribbons. ACS Nano2017, 11, 1380–1388.

    Article  CAS  Google Scholar 

  38. Nguyen, G. D.; Tsai, H. Z.; Omrani, A. A.; Marangoni, T.; Wu, M.; Rizzo, D. J.; Rodgers, G. F.; Cloke, R. R.; Durr, R. A.; Sakai, Y. et al. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor. Nat. Nanotechnol. 2017, 12, 1077–1082.

    Article  CAS  Google Scholar 

  39. Deniz, O.; Sánchez-Sánchez, C.; Jaafar, R.; Kharche, N.; Liang, L.; Meunier, V.; Feng, X.; Müllen, K.; Fasel, R.; Ruffieux, P. Electronic characterization of silicon intercalated chevron graphene nanoribbons on au(111). Chem. Commun. 2018, 54, 1619–1622.

    Article  CAS  Google Scholar 

  40. Shekhirev, M.; Zahl, P.; Sinitskii, A. Phenyl functionalization of atomically precise graphene nanoribbons for engineering inter-ribbon interactions and graphene nanopores. ACS Nano2018, 12, 8662–8669.

    Article  CAS  Google Scholar 

  41. Vo, T. H.; Shekhirev, M.; Kunkel, D. A.; Orange, F.; Guinel, M. J. F.; Enders, A.; Sinitskii, A. Bottom-up solution synthesis of narrow nitrogen-doped graphene nanoribbons. Chem. Commun. 2014, 50, 4172–4174.

    Article  CAS  Google Scholar 

  42. Szamota-Leandersson, K. Electronic structure of clean and adsorbate-covered InAs surfaces. Ph.D. Dissertation, Royal Institute of Technology, Sweden, 2010.

    Google Scholar 

  43. Andersson, C. B. M.; Andersen, J. N.; Persson, P. E. S.; Karlsson, U. O. Surface electronic structure of InAs(110). Phys. Rev. B1993, 47, 2427–2430.

    Article  CAS  Google Scholar 

  44. Klijn, J.; Sacharow, L.; Meyer, C.; Blügel, S.; Morgenstern, M.; Wiesendanger, R. Stm measurements on the InAs(110) surface directly compared with surface electronic structure calculations. Phys. Rev. B2003, 68, 205327.

    Article  CAS  Google Scholar 

  45. Yelgel, C.; Srivastava, G. P.; Miwa, R. H. Ab initio investigation of the electronic properties of graphene on InAs(111)A. J. Phys. Condens. Matter2012, 24, 485004.

    Article  CAS  Google Scholar 

  46. Andrade, D. P.; Miwa, R. H.; Srivastava, G. P. Graphene and graphene nanoribbons on InAs(110) and Au/InAs(110) surfaces: An ab initio study. Phys. Rev. B2011, 84, 165322.

    Article  CAS  Google Scholar 

  47. He, K. T.; Koepke, J. C.; Barraza-Lopez, S.; Lyding, J. W. Separationdependent electronic transparency of monolayer graphene membranes on III-V semiconductor substrates. Nano Lett. 2010, 10, 3446–3452.

    Article  CAS  Google Scholar 

  48. Ruppalt, L. B.; Lyding, J. W. Charge transfer between semiconducting carbon nanotubes and their doped GaAs(110) and InAs(110) substrates detected by scanning tunnelling spectroscopy. Nanotechnology2007, 18, 215202.

    Article  CAS  Google Scholar 

  49. Tersoff, J.; Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B1985, 31, 805–813.

    Article  CAS  Google Scholar 

  50. Davis, V. A.; Parra-Vasquez, A. N. G.; Green, M. J.; Rai, P. K.; Behabtu, N.; Prieto, V.; Booker, R. D.; Schmidt, J.; Kesselman, E.; Zhou, W. et al. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat. Nanotechnol. 2009, 4, 830–834.

    Article  CAS  Google Scholar 

  51. Behabtu, N.; Lomeda, J. R.; Green, M. J.; Higginbotham, A. L.; Sinitskii, A.; Kosynkin, D. V.; Tsentalovich, D.; Parra-Vasquez, A. N. G.; Schmidt, J.; Kesselman, E. et al. Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat. Nanotechnol. 2010, 5, 406–411.

    Article  CAS  Google Scholar 

  52. Lyding, J. W.; Skala, S.; Hubacek, J. S.; Brockenbrough, R.; Gammie, G. Variable-temperature scanning tunneling microscope. Rev. Sci. Instrum. 1988, 59, 1897–1902.

    Article  Google Scholar 

  53. Ruppalt, L. B.; Lyding, J. W. Metal-induced gap states at a carbonnanotube intramolecular heterojunction observed by scanning tunneling microscopy. Small2007, 3, 280–284.

    Article  CAS  Google Scholar 

  54. Sinitskii, A.; Dimiev, A.; Kosynkin, D. V.; Tour, J. M. Graphene nanoribbon devices produced by oxidative unzipping of carbon nanotubes. ACS Nano2010, 4, 5405–5413.

    Article  CAS  Google Scholar 

  55. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter2009, 21, 395502.

    Article  Google Scholar 

  56. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A1988, 38, 3098–3100.

    Article  CAS  Google Scholar 

  57. Kokalj, A. XCrySDen—a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 1999, 17, 176–179.

    Article  CAS  Google Scholar 

  58. Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter2002, 14, 2745–2779.

    Article  CAS  Google Scholar 

  59. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  60. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  61. Shishkin, M.; Kresse, G. Self-consistent GW calculations for semiconductors and insulators. Phys. Rev. B2007, 75, 235102.

    Article  CAS  Google Scholar 

  62. Mostofi, A. A.; Yates, J. R.; Lee, Y. S.; Souza, I.; Vanderbilt, D.; Marzari, N. Wannier90: A tool for obtaining maximally-localised wannier functions. Comput. Phys. Commun. 2008, 178, 685–699.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Office of Naval Research (No. N00014-19-1-2596) and the National Science Foundation (NSF) through CHE-1455330. Some experiments were performed with the support of Nebraska Materials Research Science and Engineering Center (NSF DMR-1420645) using the instrumentation at Nebraska Nanoscale Facility, which is supported by the NSF (ECCS-1542182) and the Nebraska Research Initiative. All the simulations were performed on the Blue Water computation resources provided by the University of Illinois at Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joseph W. Lyding or Alexander Sinitskii.

Electronic Supplementary Material

12274_2020_2797_MOESM1_ESM.pdf

Chevron-type graphene nanoribbons with a reduced energy band gap: Solution synthesis, scanning tunneling microscopy and electrical characterization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, G., Lipatov, A. et al. Chevron-type graphene nanoribbons with a reduced energy band gap: Solution synthesis, scanning tunneling microscopy and electrical characterization. Nano Res. 13, 1713–1722 (2020). https://doi.org/10.1007/s12274-020-2797-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2797-6

Keywords

Navigation